4.7 Article

Laser Ablation Mechanism and Performance of Carbon Fiber-Reinforced Poly Aryl Ether Ketone (PAEK) Composites

期刊

POLYMERS
卷 14, 期 13, 页码 -

出版社

MDPI
DOI: 10.3390/polym14132676

关键词

thermoplastic composites; ablation mechanism; continuous wave laser

资金

  1. Young Elite Scientists Sponsorship Program by the China Association for Science and Technology [2016QNRC001]

向作者/读者索取更多资源

This study investigated the ablation mechanism and performance of carbon fiber-reinforced poly aryl ether ketone thermoplastic composites, revealing the crucial role of oxygen in ablation morphology of the composites.
The ablation mechanism and performance of carbon fiber (CF)-reinforced poly aryl ether ketone (PAEK) thermoplastic composites were studied in this paper. The results show that the ablation damaged area is controlled by the irradiation energy, while the mass loss rate is controlled by the irradiation power density. In the ablation center, the PAEK resin and CFs underwent decomposition and sublimation in an anaerobic environment. In the transition zone, the resin experienced decomposition and remelting in an aerobic environment, and massive char leaves were present in the cross section. In the heat-affected zone, only remelting of the resin was observed. The fusion and decomposition of the resin caused delamination and pores in the composites. Moreover, oxygen appeared crucial to the ablation morphology of CFs. In an aerobic environment, a regular cross section formed, while in an anaerobic environment, a cortex-core structure formed. The cortex-core structure of CF inside the ablation pit was caused by the inhomogeneity of fibers along the radial direction and the residual carbon layer generated by resin decomposition in an anoxic environment. The description of the ablation mechanism presented in this study broadens our understanding of damage evolution in thermoplastic composites subjected to high-energy CW laser irradiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据