4.5 Article

Artificial intelligence in differentiating tropical infections: A step ahead

期刊

PLOS NEGLECTED TROPICAL DISEASES
卷 16, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pntd.0010455

关键词

-

向作者/读者索取更多资源

This study is the first to explore both statistical and machine learning approaches simultaneously for differentiating tropical infections. The use of machine learning techniques can aid in early detection and better patient care.
Background and objective Differentiating tropical infections are difficult due to its homogenous nature of clinical and laboratorial presentations among them. Sophisticated differential tests and prediction tools are better ways to tackle this issue. Here, we aimed to develop a clinician assisted decision making tool to differentiate the common tropical infections. Methodology A cross sectional study through 9 item self-administered questionnaire were performed to understand the need of developing a decision making tool and its parameters. The most significant differential parameters among the identified infections were measured through a retrospective study and decision tree was developed. Based on the parameters identified, a multinomial logistic regression model and a machine learning model were developed which could better differentiate the infection. Results A total of 40 physicians involved in the management of tropical infections were included for need analysis. Dengue, malaria, leptospirosis and scrub typhus were the common tropical infections in our settings. Sodium, total bilirubin, albumin, lymphocytes and platelets were the laboratory parameters; and abdominal pain, arthralgia, myalgia and urine output were the clinical presentation identified as better predictors. In multinomial logistic regression analysis with dengue as a reference revealed a predictability of 60.7%, 62.5% and 66% for dengue, malaria and leptospirosis, respectively, whereas, scrub typhus showed only 38% of predictability. The multi classification machine learning model observed to have an overall predictability of 55-60%, whereas a binary classification machine learning algorithms showed an average of 79-84% for one vs other and 69-88% for one vs one disease category. Conclusion This is a first of its kind study where both statistical and machine learning approaches were explored simultaneously for differentiating tropical infections. Machine learning techniques in healthcare sectors will aid in early detection and better patient care.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据