4.6 Article

Nanoscale organization of ryanodine receptor distribution and phosphorylation pattern determines the dynamics of calcium sparks

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 18, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1010126

关键词

-

资金

  1. Simula-UCSD-University of Oslo Research and PhD training (SUURPh) program - Norwegian Ministry ofEducation and Research
  2. Wu Tsai Human Performance Alliance
  3. Joe and Clara Tsai Foundation

向作者/读者索取更多资源

Super-resolution imaging techniques provide a better understanding of the relationship between nanoscale organization and function of ryanodine receptors (RyRs) in cardiomyocytes. Disruption of RyR cluster geometry and phosphorylation pattern significantly impact Ca2+ spark generation in failing cardiomyocytes. Both the phosphorylation pattern and nanoscale RyR reorganization are critical determinants of Ca2+ dynamics in heart failure.
Super-resolution imaging techniques have provided a better understanding of the relationship between the nanoscale organization and function of ryanodine receptors (RyRs) in cardiomyocytes. Recent data have indicated that this relationship is disrupted in heart failure (HF), as RyRs are dispersed into smaller and more numerous clusters. However, RyRs are also hyperphosphorylated in this condition, and this is reported to occur preferentially within the cluster centre. Thus, the combined impact of RyR relocalization and sensitization on Ca2+ spark generation in failing cardiomyocytes is likely complex and these observations suggest that both the nanoscale organization of RyRs and the pattern of phosphorylated RyRs within clusters could be critical determinants of Ca2+ spark dynamics. To test this hypothesis, we used computational modeling to quantify the relationships between RyR cluster geometry, phosphorylation patterns, and sarcoplasmic reticulum (SR) Ca2+ release. We found that RyR cluster disruption results in a decrease in spark fidelity and longer sparks with a lower amplitude. Phosphorylation of some RyRs within the cluster can play a compensatory role, recovering healthy spark dynamics. Interestingly, our model predicts that such compensation is critically dependent on the phosphorylation pattern, as phosphorylation localized within the cluster center resulted in longer Ca2+ sparks and higher spark fidelity compared to a uniformly distributed phosphorylation pattern. Our results strongly suggest that both the phosphorylation pattern and nanoscale RyR reorganization are critical determinants of Ca2+ dynamics in HF. Author summary Ryanodine receptors (RyRs) are ion channels located on the membrane of the sarcoplasmic reticulum that are responsible for an increase in cytosolic Ca2+ during cell excitation. Here, we investigate how the geometry of RyR clusters combined with spatial phosphorylation patterns impacts on Ca2+ spark generation and kinetics. The findings from our study show that phosphorylation pattern and both RyR cluster shape and dispersion have implications on Ca2+ spark activity and provide insights into altered Ca2+ dynamics during HF.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据