4.6 Article

SALARECON connects the Atlantic salmon genome to growth and feed efficiency

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 18, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1010194

关键词

-

资金

  1. Research Council of Norway [248792, 248810]

向作者/读者索取更多资源

SALARECON is a model that links the genome of Atlantic salmon to metabolic fluxes and growth, allowing for the simulation of metabolism and growth. It can be used to explain Atlantic salmon physiology and address key challenges in aquaculture.
Atlantic salmon (Salmo salar) is the most valuable farmed fish globally and there is much interest in optimizing its genetics and rearing conditions for growth and feed efficiency. Marine feed ingredients must be replaced to meet global demand, with challenges for fish health and sustainability. Metabolic models can address this by connecting genomes to metabolism, which converts nutrients in the feed to energy and biomass, but such models are currently not available for major aquaculture species such as salmon. We present SALARECON, a model focusing on energy, amino acid, and nucleotide metabolism that links the Atlantic salmon genome to metabolic fluxes and growth. It performs well in standardized tests and captures expected metabolic (in)capabilities. We show that it can explain observed hypoxic growth in terms of metabolic fluxes and apply it to aquaculture by simulating growth with commercial feed ingredients. Predicted limiting amino acids and feed efficiencies agree with data, and the model suggests that marine feed efficiency can be achieved by supplementing a few amino acids to plant- and insect-based feeds. SALARECON is a high-quality model that makes it possible to simulate Atlantic salmon metabolism and growth. It can be used to explain Atlantic salmon physiology and address key challenges in aquaculture such as development of sustainable feeds. Author summary Atlantic salmon aquaculture generates billions of euros annually, but faces challenges of sustainability. Salmon are carnivores by nature, and fish oil and fish meal have become scarce resources in fish feed production. Novel, sustainable feedstuffs are being trialed hand in hand with studies of the genetics of growth and feed efficiency. This calls for a mathematical-biological framework to integrate data with understanding of the effects of novel feeds on salmon physiology and its interplay with genetics. We have developed the SALARECON model of the core salmon metabolic reaction network, linking its genome to metabolic fluxes and growth. Computational analyses show good agreement with observed growth, amino acid limitations, and feed efficiencies, illustrating the potential for in silico studies of potential feed mixtures. In particular, in silico screening of possible diets will enable more efficient animal experiments with improved knowledge gain. We have adopted best practices for test-driven development, virtual experiments to assay metabolic capabilities, revision control, and FAIR data and model management. This facilitates fast, collaborative, reliable development of the model for future applications in sustainable production biology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据