4.6 Article

Multi-scale model suggests the trade-off between protein and ATP demand as a driver of metabolic changes during yeast replicative ageing

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 18, 期 7, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1010261

关键词

-

资金

  1. Swedish Research Council [VR2016-03744, VR2017-05117]
  2. Swedish Foundation for Strategic Research [FFL15-0238]

向作者/读者索取更多资源

Protein damage accumulation is a major driver of replicative ageing, and is closely linked to reactive oxygen and nitrogen species. Cells can adapt their metabolism to slow down damage accumulation, but older or damaged cells have less flexibility in allocating enzymes across the metabolic network, leading to further metabolic adaptations.
The accumulation of protein damage is one of the major drivers of replicative ageing, describing a cell's reduced ability to reproduce over time even under optimal conditions. Reactive oxygen and nitrogen species are precursors of protein damage and therefore tightly linked to ageing. At the same time, they are an inevitable by-product of the cell's metabolism. Cells are able to sense high levels of reactive oxygen and nitrogen species and can subsequently adapt their metabolism through gene regulation to slow down damage accumulation. However, the older or damaged a cell is the less flexibility it has to allocate enzymes across the metabolic network, forcing further adaptions in the metabolism. To investigate changes in the metabolism during replicative ageing, we developed an multiscale mathematical model using budding yeast as a model organism. The model consists of three interconnected modules: a Boolean model of the signalling network, an enzyme-constrained flux balance model of the central carbon metabolism and a dynamic model of growth and protein damage accumulation with discrete cell divisions. The model can explain known features of replicative ageing, like average lifespan and increase in generation time during successive division, in yeast wildtype cells by a decreasing pool of functional enzymes and an increasing energy demand for maintenance. We further used the model to identify three consecutive metabolic phases, that a cell can undergo during its life, and their influence on the replicative potential, and proposed an intervention span for lifespan control.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据