4.6 Article

Non-zero mean alpha oscillations revealed with computational model and empirical data

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 18, 期 7, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1010272

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (German Research Foundation) [424778381 TRR 295]

向作者/读者索取更多资源

Ongoing oscillations and evoked responses in neuronal activity may be closely related, with non-zero mean neuronal oscillations potentially contributing to the generation of evoked responses. This mechanism was validated using computational modeling and analysis of EEG data. Empirical EEG recordings also supported the presence of non-zero mean oscillations. These findings have important implications for inferring changes in evoked responses related to cognitive conditions, age, or neuropathologies.
Ongoing oscillations and evoked responses are two main types of neuronal activity obtained with diverse electrophysiological recordings (EEG/MEG/iEEG/LFP). Although typically studied separately, they might in fact be closely related. One possibility to unite them is to demonstrate that neuronal oscillations have non-zero mean which predicts that stimulus- or task-triggered amplitude modulation of oscillations can contribute to the generation of evoked responses. We validated this mechanism using computational modelling and analysis of a large EEG data set. With a biophysical model, we indeed demonstrated that intracellular currents in the neuron are asymmetric and, consequently, the mean of alpha oscillations is non-zero. To understand the effect that neuronal currents exert on oscillatory mean, we varied several biophysical and morphological properties of neurons in the network, such as voltage-gated channel densities, length of dendrites, and intensity of incoming stimuli. For a very large range of model parameters, we observed evidence for non-zero mean of oscillations. Complimentary, we analysed empirical rest EEG recordings of 90 participants (50 young, 40 elderly) and, with spatio-spectral decomposition, detected at least one spatially-filtred oscillatory component of non-zero mean alpha oscillations in 93% of participants. In order to explain a complex relationship between the dynamics of amplitudeenvelope and corresponding baseline shifts, we performed additional simulations with simple oscillators coupled with different time delays. We demonstrated that the extent of spatial synchronisation may obscure macroscopic estimation of alpha rhythm modulation while leaving baseline shifts unchanged. Overall, our results predict that amplitude modulation of neural oscillations should at least partially explain the generation of evoked responses. Therefore, inference about changes in evoked responses with respect to cognitive conditions, age or neuropathologies should be constructed while taking into account oscillatory neuronal dynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据