4.5 Article

Investigation of Leakage Current Mechanisms in La2O3/SiO2/4H-SiC MOS Capacitors with Varied SiO2 Thickness

期刊

JOURNAL OF ELECTRONIC MATERIALS
卷 45, 期 11, 页码 5600-5605

出版社

SPRINGER
DOI: 10.1007/s11664-016-4760-6

关键词

La2O3; 4H-SiC; x-ray photoelectron spectroscopy; current leakage mechanism

资金

  1. National Natural Science Foundation of China [51272202, 51472196]

向作者/读者索取更多资源

In this study, the material and electrical properties of La2O3/SiO2/4H-SiC metal-oxide-semiconductor (MOS) capacitors are systematically characterized. Thermal oxidization SiO2 with varying thickness (0 nm, 3.36 nm, 5 nm, 8 nm, and 30 nm) were coated with La2O3 using atomic layer deposition on n-type 4H-SiC. The stacking oxides were measured using atomic force microscopy, transmission electron microscopy, and x-ray photoelectron spectroscopy, and the MOS capacitors were measured by capacitance-voltage and current-voltage measurements. The results demonstrate that the main gate current leakage mechanisms are dependent on the thickness of the SiO2 oxide under the applied electric field. The primary mechanism for current leakage from the La2O3/4H-SiC MOS capacitor follows the Schottky emission mechanism due to its low conduction band offset. In contrast, the current leakage mechanism for the capacitor with a 3.36 nm SiO2 layer follows the Poole-Frenkel emission mechanism on account of its high trap charge density in the gate dielectric and at the interface. When the thickness of the SiO2 layer increases to 8 nm, lower leakage current is observed by reason of the low trap charge density and high conduction band offset when E aecurrency sign 5 MV/cm. As the electric field strength increases to 5 MV/cm and 5.88 MV/cm (30 nm SiO2: 4.8 MV/cm), the main current leakage mechanism changes to the Fowler-Nordheim tunneling mechanism, which indicates that the La2O3/SiO2 stacking structure can improve the properties of MOS capacitors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据