4.7 Article

High Conduction Band Inorganic Layers for Distinct Enhancement of Electrical Energy Storage in Polymer Nanocomposites

期刊

NANO-MICRO LETTERS
卷 14, 期 1, 页码 -

出版社

SHANGHAI JIAO TONG UNIV PRESS
DOI: 10.1007/s40820-022-00902-9

关键词

Boron nitride nanosheet; Conduction band; Efficiency; Energy density; Barrier

资金

  1. Shanghai Jiao Tong University

向作者/读者索取更多资源

Dielectric polymer nanocomposites, with the introduction of boron nitride nanosheet (BNNS), show significantly improved electrical energy storage capability, including suppressed leakage current, superior breakdown strength, improved modulus, boosted discharge energy density, and charge-discharge efficiency.
Dielectric polymer nanocomposites are considered as one of the most promising candidates for high-power-density electrical energy storage applications. Inorganic nanofillers with high insulation property are frequently introduced into fluoropolymer to improve its breakdown strength and energy storage capability. Normally, inorganic nanofillers are thought to introducing traps into polymer matrix to suppress leakage current. However, how these nanofillers effect the leakage current is still unclear. Meanwhile, high dopant (> 5 vol%) is prerequisite for distinctly improved energy storage performance, which severely deteriorates the processing and mechanical property of polymer nanocomposites, hence brings high technical complication and cost. Herein, boron nitride nanosheet (BNNS) layers are utilized for substantially improving the electrical energy storage capability of polyvinylidene fluoride (PVDF) nanocomposite. Results reveal that the high conduction band minimum of BNNS produces energy barrier at the interface of adjacent layers, preventing the electron in PVDF from passing through inorganic layers, leading to suppressed leakage current and superior breakdown strength. Accompanied by improved Young's modulus (from 1.2 GPa of PVDF to 1.6 GPa of nanocomposite), significantly boosted discharged energy density (14.3 J cm(-3)) and charge-discharge efficiency (75%) are realized in multilayered nanocomposites, which are 340 and 300% of PVDF (4.2 J cm(-3), 25%). More importantly, thus remarkably boosted energy storage performance is accomplished by marginal BNNS. This work offers a new paradigm for developing dielectric nanocomposites with advanced energy storage performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据