4.0 Review

Mechanisms of structural chromosomal rearrangement formation

期刊

MOLECULAR CYTOGENETICS
卷 15, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s13039-022-00600-6

关键词

Structural chromosomal rearrangements; Mechanisms of formation; Non-allelic homologous recombination (NAHR); Non-homologous end-joining (NHEJ); Fork stalling and template switching (FoSTeS); Microhomology-mediated break-induced replication (MMBIR); Chromoanagenesis; Inv dup del; Ring chromosome

资金

  1. Sao Paulo Research Foundation-FAPESP, Brazil [2019/21644-0]
  2. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), Brazil

向作者/读者索取更多资源

Structural chromosomal rearrangements can result from various mechanisms related to genomic architectural features, leading to genetic instability. Important mechanisms include Non-Allelic Homologous Recombination (NAHR), Non-Homologous End-Joining (NHEJ), Fork Stalling and Template Switching (FoSTeS), and Microhomology-Mediated Break-Induced Replication (MMBIR). High-resolution analysis is crucial for determining the mechanisms of formation of structural rearrangements.
Structural chromosomal rearrangements result from different mechanisms of formation, usually related to certain genomic architectural features that may lead to genetic instability. Most of these rearrangements arise from recombination, repair, or replication mechanisms that occur after a double-strand break or the stalling/breakage of a replication fork. Here, we review the mechanisms of formation of structural rearrangements, highlighting their main features and differences. The most important mechanisms of constitutional chromosomal alterations are discussed, including Non-Allelic Homologous Recombination (NAHR), Non-Homologous End-Joining (NHEJ), Fork Stalling and Template Switching (FoSTeS), and Microhomology-Mediated Break-Induced Replication (MMBIR). Their involvement in chromoanagenesis and in the formation of complex chromosomal rearrangements, inverted duplications associated with terminal deletions, and ring chromosomes is also outlined. We reinforce the importance of high-resolution analysis to determine the DNA sequence at, and near, their breakpoints in order to infer the mechanisms of formation of structural rearrangements and to reveal how cells respond to DNA damage and repair broken ends.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据