4.5 Article Proceedings Paper

Fabrication of a Nanoscale Electrical Contact on a Bismuth Nanowire Encapsulated in a Quartz Template by Using FIB-SEM

期刊

JOURNAL OF ELECTRONIC MATERIALS
卷 46, 期 5, 页码 2782-2789

出版社

SPRINGER
DOI: 10.1007/s11664-016-4968-5

关键词

Bi nanowire; thermoelectrics; focused ion beam; ohmic contact; quartz template

资金

  1. NIMS Nanofabrication Platform of the Nanotechnology Platform Project
  2. Nanotechnology Platform [12024046]
  3. Ministry of Education, Culture, Sports, Science and Technology (MEXT)
  4. Thermal & Electric Energy Technology Foundation
  5. Advanced Research Program for Energy and Environmental Technologies of the New Energy and Industrial Technology Development Organization (NEDO), Japan
  6. Nanotechnology Platform Program'' of MEXT, Japan
  7. Grants-in-Aid for Scientific Research [15H04142, 15K05120] Funding Source: KAKEN

向作者/读者索取更多资源

A method to fabricate an electrode on a 110-nm-diameter Bi nanowire, encapsulated in a quartz template, was established using a dual beam instrument equipped with a focused ion beam and a scanning electron microscope. A fabrication method has already been successfully developed to obtain suitable Ohmic contact on both ends of Bi nanowires (several hundred nanometers in diameter) by first polishing the ends of the nanowires, and then depositing titanium/copper thin-films via an ion-plating method. However, with this method, it was difficult to obtain suitable electrodes on Bi nanowires with diameters less than 300 nm. Therefore, in order to understand why it was not possible to establish an electrical contact in small-diameter Bi nanowires, the vertical section of the fabricated electrode and the end of a 110-nm-diameter Bi nanowire were observed using a focused ion beam scanning electron microscope. A vacant area was observed between the end of the nanowire and the titanium thin-film, indicating a possible cause for the electrical contact failure. This implies that the quartz-encapsulated Bi nanowire is selectively removed when it undergoes polishing due to the great difference in hardness between Bi and quartz. A local electrode, which would connect the exposed area of the Bi nanowire and the metal thin-films on the surface of the quartz template, was fabricated by tungsten deposition using an electron beam. After fabrication of the opposite-end electrode by the same method, an electrical connection was successfully confirmed by measuring the voltage between both ends of the metal thin-films with a circuit tester. Ohmic contact was confirmed by measuring the current-voltage characteristics between the fabricated electrodes. As a result, the electrical resistivity and Seebeck coefficient were successfully measured at 300 K.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据