4.5 Article

Land use/land cover and change detection mapping in Rahuri watershed area (MS), India using the google earth engine and machine learning approach

期刊

GEOCARTO INTERNATIONAL
卷 37, 期 26, 页码 13860-13880

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/10106049.2022.2086622

关键词

Google earth engine; random forest; classification; LULC; remote sensing

向作者/读者索取更多资源

This study focuses on mapping land use and land cover changes, NDVI, and change detection maps, which have direct impacts on ecosystems, land resources, cropping patterns, and agriculture. A soft computing machine learning algorithm is developed based on the Google Earth Engine platform and SAGA GIS software. The experimental results show an increase in agricultural and built-up land, as well as degraded land, fallow land, and waterbodies areas in the Rahuri area.
The change detection and land use and land cover (LULC) maps are more important powerful forces behind numerous ecological systems and fallow land. The current research focuses on demarcating the spatiotemporal LULC changes, NDVI and change detections maps. These effects directly affect the ecosystem, land resources, cropping pattern and agriculture. LULC assessment and surveillance are essential for long-term planning and sustainable use of natural resources. However, we have developed the soft computing machine learning algorithm for mapping land use and land cover based on the Google earth engine (GEE) platform and change detection mapping done by SAGA GIS software. It is significantly used for ecological safety and planning under various climate variations. To accurately describe the land use and land cover classes with changes are identified in the area. This area exclusively uses the multitemporal Landsat-5 (30 m) and Sentinel-2 (10 m) imageries in LULC mapping. The GEE is a cloud-computing platform with the prevailing classification ability of random forest (RF) models to make five-year interval LULC maps for 2010, 2015 and 2020. To unique multiple RF models established as a classifier in the algorithm created by JavaScript and GEE. SAGA GIS has provided the best platform for detecting changes in land use and land cover classes. NDVI maps are created based on the cloud-based platform. These maps value ranges between -0.68 to -0.15, 0.76 to -0.29 and 0.66 to -0.11 in 2010, 2015 and 2020. Experimental outcomes indicate five classes such as water bodies, built up, barren, cropland and fallow land during 2010, 2015 and 2020. The overall accuracy of User and Producer for 2010, 2015 and 2019 years in between 86.23%, 88.34%, 85.53% and 92.51%, 94.34% and 91.54%, respectively. We have observed that (2010, 2015 - 2020) agriculture and built-up land increased by 1040.76 ha, 1246.32 ha, 1500.93 ha and 34.96 ha, 37.08 ha, 42.58 ha, respectively. Other side degraded land, fallow land, waterbodies areas (953.19 ha, 679.23 ha, 937.24 ha and 1385.73 ha, 1513.53 ha, 991.08 ha and 32.85 ha, 21.33 ha, 25.66 ha) are increased during the year of 2010, 2015 and 2020, respectively. While results have been done by GEE cloud platform and remote sensing data, this developed algorithm easily classified the land use maps from Landsat-5 and Sentinel-2 TM imagery in the machine learning approach. The determined 30-m and 10-m three-year LULC maps are made-up to deliver vital data on the changes, monitoring and understanding of which types of LULC classes and changes have occupied a place in the Rahuri area.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据