4.5 Article

Oxidation Temperature Dependence of the Structural, Optical and Electrical Properties of SnO2 Thin Films

期刊

JOURNAL OF ELECTRONIC MATERIALS
卷 45, 期 8, 页码 4357-4363

出版社

SPRINGER
DOI: 10.1007/s11664-016-4611-5

关键词

Thin films; SnO2; oxidation temperature; XRD; RBS

向作者/读者索取更多资源

In this work, SnO2 thin films were prepared by thermal oxidation of Sn in an oxygen-rich atmosphere. The Sn thin films were deposited onto Si (100) substrates by vacuum evaporation, and the properties of the oxide films were investigated as a function of the oxidation temperature. The x-ray diffraction patterns showed that the obtained films have a polycrystalline structure with a preferential orientation along the (101) plane. The film oxidized at 500 degrees C was not completely oxidized. The grain growth of the films was controlled by the pore mobility process. The UV-Vis reflectance spectra revealed an increase in both the refractive index and density of the films, reflecting the densification of the investigated films. The band gap energy decreased from 3.78 eV to 3.62 eV, caused by an increase in charge carrier density due to increased grain size. The increase in film thickness can be explained by the upward diffusion of tin atoms into the oxide film surface and the downward diffusion of oxygen atoms into the metal. The increase in the O/Sn ratio, determined from Rutherford backscattering spectroscopy, indicated enhanced material stoichiometry. Electrical resistivity decreased from 9.7 x 10(-3) Omega cm to 1.7 x 10(-4) Omega cm, which was attributed to the increased grain size.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据