4.5 Article

Rhizosphere soil bacterial communities and nitrogen cycling affected by deciduous and evergreen tree species

期刊

ECOLOGY AND EVOLUTION
卷 12, 期 7, 页码 -

出版社

WILEY
DOI: 10.1002/ece3.9103

关键词

actinorhizal plants; co-occurrence network; mixed plantations; photosynthetic carbon; plant-soil interactions

资金

  1. Zhejiang Provincial Natural Science Foundation of China [LQ18C030003]
  2. Starting Research Fund from Hangzhou Normal University [2018QDL006, 2018QDL005]

向作者/读者索取更多资源

The study revealed distinct differences in rhizosphere soil bacterial community and nitrogen cycling functions between deciduous and evergreen trees, with root biomass having the most significant impact on these processes.
Deciduous and evergreen trees differ in their responses to drought and nitrogen (N) demand. Whether or not these functional types affect the role of the bacterial community in the N cycle during drought remains uncertain. Two deciduous tree species (Alnus cremastogyne, an N-2-fixing species, and Liquidambar formosana) and two evergreen trees (Cunninghamia lanceolata and Pinus massoniana) were used to assess factors in controlling rhizosphere soil bacterial community and N cycling functions. Photosynthetic rates and biomass production of plants, 16S rRNA sequencing and N-cycling-related genes of rhizosphere soil were measured. The relative abundance of the phyla Actinobacteria and Firmicutes was higher, and that of Proteobacteria, Acidobacteria, and Gemmatimondaetes was lower in rhizosphere soil of deciduous trees than that of evergreen. Beta-diversity of bacterial community also significantly differed between the two types of trees. Deciduous trees showed significantly higher net photosynthetic rates and biomass production than evergreen species both at well water condition and short-term drought. Root biomass was the most important factor in driving soil bacterial community and N-cycling functions than total biomass and aboveground biomass. Furthermore, 44 bacteria genera with a decreasing response and 46 taxa showed an increased response along the root biomass gradient. Regarding N-cycle-related functional genes, copy numbers of ammonia-oxidizing bacteria (AOB) and autotrophic ammonia-oxidizing archaea (AOA), N-2 fixation gene (nifH), and denitrification genes (nirK, nirS) were significantly higher in the soil of deciduous trees than in that of the evergreen. Structural equation models explained 50.2%, 47.6%, 48.6%, 49.4%, and 37.3% of the variability in copy numbers of nifH, AOB, AOA, nirK, and nirS, respectively, and revealed that root biomass had significant positive effects on copy numbers of all N-cycle functional genes. In conclusion, root biomass played key roles in affecting bacterial community structure and soil N cycling. Our findings have important implications for our understanding of plants control over bacterial community and N-cycling function in artificial forest ecosystems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据