4.7 Article

Endoplasmic reticulum stress modulates the fate of lung resident mesenchymal stem cell to myofibroblast via C/EBP homologous protein during pulmonary fibrosis

期刊

STEM CELL RESEARCH & THERAPY
卷 13, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s13287-022-02966-1

关键词

Lung resident mesenchymal stem cell; Endoplasmic reticulum stress; C; EBP homologous protein; Pulmonary fibrosis

资金

  1. National Natural Science Foundation of China [82070067]
  2. National Key R&D Program of China [2016YFC0905700]

向作者/读者索取更多资源

This study found that endoplasmic reticulum (ER) stress is associated with the behavior of lung resident mesenchymal/stromal cells (LR-MSC) during pulmonary fibrosis, and the ER stress responder C/EBP homologous protein (CHOP) plays a key role in this process. Targeting CHOP or using therapies based on CHOP knockdown LR-MSC may be promising ways to treat pulmonary fibrosis.
Background As a fatal interstitial lung disease, idiopathic pulmonary fibrosis (IPF) was characterized by the insidious proliferation of extracellular matrix (ECM)-producing mesenchymal cells. Recent studies have demonstrated that lung resident mesenchymal/stromal cells (LR-MSC) are the source of myofibroblasts. Endoplasmic reticulum (ER) stress is prominent in IPF lung. This study sought to investigate the effects of ER stress on the behavior of LR-MSC during pulmonary fibrosis. Methods ER stress and myofibroblast differentiation of LR-MSC in patients with IPF were evaluated. Primary mouse LR-MSC was harvested and used in vitro for testing the effects of ER stress and C/EBP homologous protein (CHOP) on LR-MSC. Adoptive transplantation of LR-MSC to bleomycin-induced pulmonary fibrosis was done to test the in vivo behavior of LR-MSC and its influence on pulmonary fibrosis. Results We found that myofibroblast differentiation of LR-MSC is associated with ER stress in IPF and bleomycin-induced mouse fibrotic lung. Tunicamycin-induced ER stress impairs the paracrine, migration, and reparative function of mouse LR-MSC to injured type 2 alveolar epithelial cells MLE-12. Overexpression of the ER stress responder C/EBP homologous protein (CHOP) facilitates the TGF beta 1-induced myofibroblast transformation of LR-MSC via boosting the TGF beta/SMAD signaling pathway. CHOP knockdown facilitates engraftment and inhibits the myofibroblast transformation of LR-MSC during bleomycin-induced pulmonary fibrosis, thus promoting the efficacy of adopted LR-MSC in alleviating pulmonary fibrosis. Conclusion Our work revealed a novel role that ER stress involved in pulmonary fibrosis by influencing the fate of LR-MSC and transformed to crime factor myofibroblast, during which CHOP acts as the key modulator. These results indicate that pharmacies targeting CHOP or therapies based on CHOP knockdown LR-MSC may be promising ways to treat pulmonary fibrosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据