4.7 Article

Optimization of the 4-anilinoquin(az)oline scaffold as epidermal growth factor receptor (EGFR) inhibitors for chordoma utilizing a toxicology profiling assay platform

期刊

SCIENTIFIC REPORTS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-15552-5

关键词

-

资金

  1. AbbVie
  2. Bayer Pharma AG
  3. Boehringer Ingelheim
  4. Canada Foundation for Innovation
  5. Eshelman Institute for Innovation
  6. Genome Canada
  7. Innovative Medicines Initiative (EU/EFPIA) [ULTRA-DD Grant] [115766]
  8. Janssen
  9. Merck KGaA Darmstadt Germany
  10. MSD
  11. Novartis Pharma AG
  12. Ontario Ministry of Economic Development and Innovation
  13. Pfizer
  14. Sao Paulo Research Foundation-FAPESP
  15. Takeda
  16. Wellcome [106169/ZZ14/Z]
  17. UNC-CH
  18. Biocenter Finland/DDCB
  19. National Science Foundation [CHE-1726291]

向作者/读者索取更多资源

The study screened a group of compounds based on a well-known kinase inhibitor scaffold and identified a set of potential therapeutic compounds for chordomas. These compounds showed significant inhibitory effects in both cell lines and patient derived cells, and the study also investigated the properties related to their toxicity, providing new chemical tools and probe compound for studying EGFR mediated disease phenotypes.
The 4-anilinoquin(az)oline is a well-known kinase inhibitor scaffold incorporated in clinical inhibitors including gefitinib, erlotinib, afatinib, and lapatinib, all of which have previously demonstrated activity against chordoma cell lines in vitro. We screened a focused array of compounds based on the 4-anilinoquin(az)oline scaffold against both U-CH1 and the epidermal growth factor receptor (EGFR) inhibitor resistant U-CH2. To prioritize the hit compounds for further development, we screened the compound set in a multiparameter cell health toxicity assay. The de-risked compounds were then screened against a wider panel of patient derived cell lines and demonstrated low micromolar efficacy in cells. We also investigated the properties that gave rise to the toxophore markers, including the structural and electronic features, while optimizing for EGFR in-cell target engagement. These de-risked leads present a potential new therapeutic avenue for treatment of chordomas and new chemical tools and probe compound 45 (UNC-CA359) to interrogate EGFR mediated disease phenotypes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据