4.7 Article

Characterization of mitochondrial dysfunction due to laser damage by 2-photon FLIM microscopy

期刊

SCIENTIFIC REPORTS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-15639-z

关键词

-

资金

  1. National Institutes of Health [NIH-OD016446, AG067048]
  2. Brain Institute, University of Virginia

向作者/读者索取更多资源

Mitochondria, as the central organelles in cellular bio-energetics, play key roles in energy metabolism and cell fate decisions. FLIM can track metabolic changes by following the intrinsic co-enzymes NAD(P)H and FAD. Increasing laser power levels can affect mitochondrial activity and induce changes.
Mitochondria are the central organelles in cellular bio-energetics with key roles to play in energy metabolism and cell fate decisions. Fluorescence Lifetime Imaging microscopy (FLIM) is used to track metabolic changes by following the intrinsic co-enzymes NAD(P)H and FAD, present in metabolic pathways. FLIM records-lifetimes and the relative fractions of free (unbound) and bound states of NAD(P)H and FAD are achieved by multiphoton excitation of a pulsed femto-second infra-red laser. Optimization of multiphoton laser power levels is critical to achieve sufficient photon counts for correct lifetime fitting while avoiding phototoxic effects. We have characterized two photon (2p) laser induced changes at the intra-cellular level, specifically in the mitochondria, where damage was assessed at rising 2p laser average power excitation. Our results show that NAD(P)H-a2%-the lifetime-based enzyme bound fraction, an indicator of mitochondrial OXPHOS activity is increased by rising average power, while inducing changes in the mitochondria at higher power levels, quantified by different probes. Treatment response tracked by means of NAD(P)H-a2% can be confounded by laser-induced damage producing the same effect. Our study demonstrates that 2p-laser power optimization is critical by characterizing changes in the mitochondria at increasing laser average power.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据