4.7 Article

Community confounding in joint species distribution models

期刊

SCIENTIFIC REPORTS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-15694-6

关键词

-

资金

  1. Colorado Parks and Wildlife

向作者/读者索取更多资源

Joint species distribution models are commonly used to study species-environment relationships and species dependence. This study introduces a method for measuring community confounding and demonstrates how to orthogonalize the environmental and random species effects in joint species distribution models. The results show that community confounding can lead to computational difficulties, but orthogonalizing the effects can alleviate these difficulties. The implications of community confounding and orthogonalization are discussed through a case study on mammalian responses to a bark beetle epidemic.
Joint species distribution models have become ubiquitous for studying species-environment relationships and dependence among species. Accounting for community structure often improves predictive power, but can also affect inference on species-environment relationships. Specifically, some parameterizations of joint species distribution models allow interspecies dependence and environmental effects to explain the same sources of variability in species distributions, a phenomenon we call community confounding. We present a method for measuring community confounding and show how to orthogonalize the environmental and random species effects in suite of joint species distribution models. In a simulation study, we show that community confounding can lead to computational difficulties and that orthogonalizing the environmental and random species effects can alleviate these difficulties. We also discuss the inferential implications of community confounding and orthogonalizing the environmental and random species effects in a case study of mammalian responses to the Colorado bark beetle epidemic in the subalpine forest by comparing the outputs from occupancy models that treat species independently or account for interspecies dependence. We illustrate how joint species distribution models that restrict the random species effects to be orthogonal to the fixed effects can have computational benefits and still recover the inference provided by an unrestricted joint species distribution model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据