4.3 Article

Neuromuscular response of the trunk to sudden gait disturbances: Forward vs. backward perturbation

期刊

JOURNAL OF ELECTROMYOGRAPHY AND KINESIOLOGY
卷 30, 期 -, 页码 168-176

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jelekin.2016.07.005

关键词

Stumbling; Gait perturbation; EMG; Core; MiSpEx*

资金

  1. German Federal Institute of Sport Science and realized within *MiSpEx - the National Research Network for Medicine in Spine Exercise [BISp IIA1-080102A/11-14]
  2. European Union (ERDF - European Regional Development Fund) [80132471]

向作者/读者索取更多资源

The study aimed to analyse neuromuscular activity of the trunk comparing four different perturbations during gait. Thirteen subjects (28 +/- 3 yrs) walked (1 m/s) on a split-belt treadmill, while 4 (belt) perturbations (F1, F2, B1, B2) were randomly applied. Perturbations differed, related to treadmill belt translation, in direction (forward (F)/backward (B)) and amplitude (20 m/s(2) (1)/40 m/s(2) (2)). Trunk muscle activity was assessed with a 12-lead-EMG. EMG-RMS [%] (0-200 ms after perturbation; normalized to RMS of normal gait) was analyzed for muscles and four trunk areas (ventral left/right; dorsal left/right). Ratio of ventral: dorsal muscles were calculated. Muscle onset [ms] was determined. Data analysis was conducted descriptively, followed by ANOVA (post hoc Tukey-Kramer (alpha = 0.05)). All perturbations lead to an increase in EMG-RMS (428 +/- 289%). F1 showed the lowest and F2 the highest increase for the flexors. B2 showed the highest increase for the extensors. Significant differences between perturbations could be observed for 6 muscles, as well as the 4 trunk areas. Ratio analysis revealed no significant differences (range 1.25 (B1) to 1.71 (F2) between stimuli. Muscle response time (ventral: 87.0 +/- 21.7 ms; dorsal: 88.4 +/- 17.0 ms) between stimuli was only significant (p = 0.005) for the dorsal muscles. Magnitude significantly influences neuromuscular trunk response patterns in healthy adults. Regardless of direction ventral muscles always revealed higher relative increase of activity while compensating the walking perturbations. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据