4.7 Article

Leveraging physical intelligence for the self-design of high performance engineering structures

期刊

SCIENTIFIC REPORTS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-15229-z

关键词

-

资金

  1. Bourgogne Franche-Comte Region
  2. EUR EIPHI Project [ANR-17-EURE-0002]

向作者/读者索取更多资源

The design of complex engineering structures heavily relies on computational intelligence and science-based predictive models. The proposed self-design paradigm leverages physical intelligence from real-time experimental observations to address uncertainties and achieve customized design with enhanced performance.
The design of complex engineering structures largely relies on computational intelligence in the form of science-based predictive models to support design decisions. This approach requires modeling and manufacturing uncertainties to be accounted for explicitly and leads to an inescapable trade-off of performance for robustness. To remedy this situation, a novel self-design paradigm is proposed that closes the loop between the design and manufacturing processes by leveraging physical intelligence in the form of real-time experimental observations. This allows the real-time product behavior to participate in its own design. The main benefit of the proposed paradigm is that both manufacturing variability and difficult-to-model physics are accounted for implicitly via in situ measurements thus circumventing the performance-robustness trade-off and guaranteeing enhanced performance with respect to standardized designs. This paradigm shift leads to tailored design realizations which could benefit a wide range of high performance engineering applications. The proposed paradigm is applied to the design of a simply-supported plate with a beam-like absorber introduced to reduce vibrations based on an equal peaks performance criteria. The experimental setup includes a low-cost 3D printer driven by a simple decision algorithm and equipped with an online vibration testing system. The performances of a small population of self-designed plates are compared to their standardized counterparts in order to highlight the advantages and limitations of the new self-design manufacturing paradigm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据