4.7 Article

Copper nanoparticles/polyaniline/graphene composite as a highly sensitive electrochemical glucose sensor

期刊

JOURNAL OF ELECTROANALYTICAL CHEMISTRY
卷 781, 期 -, 页码 155-160

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jelechem.2016.08.004

关键词

Copper nanoparticles; Polyaniline; Non-enzymatic sensor; Glucose electrooxidation; Graphene

资金

  1. Innovation and Technology Commission of Hong Kong
  2. Hong Kong Polytechnic University
  3. Patrick S.C. Poon Endowed Professorship

向作者/读者索取更多资源

A highly sensitive non-enzymatic glucose sensor based on Cu nanoparticles (CuNPs)/polyaniline (PANT)/graphene nanocomposite was fabricated via simple in-situ reduction of Cu precursor in polyaniline nanofibers under mild conditions followed by mechanical mixing with graphene suspension to form the composites with different graphene contents (0.5%, 1%, and 2%). The properties of nanocomposites were characterized by SEM, TEM, XRD, UV-Vis, and XPS. The CuNPs (d = 2-4 nm) only slightly altered the ordered structure of PANI. It was found that CuNPs have direct electronic interaction with PANI via the N atoms on the polymer backbone, which enabled fast electrons transfer from electrode to CuNPs through graphene and PANI. The CuNPs/PANI/graphene nanocomposites were coated on a glassy carbon electrode for the investigation of their electrochemical properties. Both CuNPs/PANI and CuNPs/PANI/graphene showed high sensitivity towards glucose oxidation which occurred at similar to 0.5 V vs. SCE. The best performance was achieved by the CuNPs/PANI/1% graphene-modified electrode which showed sensitivity of similar to 150 mA cm(-2) M-1, detection limit of 0.27 mu M (S/N = 3), and response time of about 3 s. This system was also highly selective towards glucose oxidation that almost no signal was detected from interferents such as ascorbic acid and dopamine, demonstrating its great potential as a non-enzymatic glucose sensor. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据