4.8 Article

Biomimetic generation of the strongest known biomaterial found in limpet tooth

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-31139-0

关键词

-

资金

  1. University of Portsmouth Themes Research and Innovation Fund (TRIF)
  2. Research England's Expanding Excellence in England (E3) Fund

向作者/读者索取更多资源

The researchers successfully replicated the developmental process of Limpet teeth and generated new biomimetic structures through ex vivo experiments and cell cultures. Transcriptomic analysis revealed changes in gene expression related to chitin and iron processing. The findings lay the foundation for the development of biomimetic materials with similar properties.
The biomaterial with the highest known tensile strength is a unique composite of chitin and goethite (alpha-FeO(OH)) present in teeth from the Common Limpet (Patella vulgata). A biomimetic based on limpet tooth, with corresponding high-performance mechanical properties is highly desirable. Here we report on the replication of limpet tooth developmental processes ex vivo, where isolated limpet tissue and cells in culture generate new biomimetic structures. Transcriptomic analysis of each developmental stage of the radula, the organ from which limpet teeth originate, identifies sequential changes in expression of genes related to chitin and iron processing. We quantify iron and chitin metabolic processes in the radula and grow isolated radula cells in vitro. Bioinspired material can be developed with electrospun chitin mineralised by conditioned media from cultured radula cells. Our results inform molecular processes behind the generation of limpet tooth and establish a platform for development of a novel biomimetic with comparable properties. The highest tensile strength biomaterial known exists in limpet teeth and replicating this material is of interest. Here, the authors report on the ex vivo growth of teeth and use of isolated limpet tissue and cells providing foundations for the development of this high-tensile biomaterial.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据