4.8 Article

Post-translational amino acid conversion in photosystem II as a possible origin of photosynthetic oxygen evolution

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-31931-y

关键词

-

资金

  1. Research Center for Computational Science, Okazaki, Japan [22-OMS-C084, 21-IMS-C082]
  2. JSPS KAKENHI [JP17H06433, JP17H06435]

向作者/读者索取更多资源

The authors find that certain amino acid residues at the ligand sites of the Mn cluster can be posttranslationally converted to the original carboxylate residues, which may have contributed to the evolution of photosynthetic oxygen evolution.
How photosynthetic oxygen evolution is originated on ancient Earth is unknown. Here, the authors find that some amino acid residues at the ligand sites of the Mn cluster can be posttranslationally converted to the original carboxylate residues, which could have contributed to the evolutionary process of photosynthetic oxygen evolution. Photosynthetic oxygen evolution is performed at the Mn cluster in photosystem II (PSII). The advent of this reaction on ancient Earth changed its environment by generating an oxygenic atmosphere. However, how oxygen evolution originated during the PSII evolution remains unknown. Here, we characterize the site-directed mutants at the carboxylate ligands to the Mn cluster in cyanobacterial PSII. A His residue replaced for D1-D170 is found to be post-translationally converted to the original Asp to recover oxygen evolution. Gln/Asn residues in the mutants at D1-E189/D1-D342 are also converted to Glu/Asp, suggesting that amino-acid conversion is a common phenomenon at the ligand sites of the Mn cluster. We hypothesize that post-translational generation of carboxylate ligands in ancestral PSII could have led to the formation of a primitive form of the Mn cluster capable of partial water oxidation, which could have played a crucial role in the evolutionary process of photosynthetic oxygen evolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据