4.8 Article

Sustainable environmental remediation via biomimetic multifunctional lignocellulosic nano-framework

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-31881-5

关键词

-

资金

  1. National Institutes of Health [R01ES032708]

向作者/读者索取更多资源

To address the threat of persistent organic pollutants, researchers have developed a plant-derived biomimetic nano-framework for efficient PFAS remediation through fungal biotransformation synergistically.
Chemical pollution threatens human health and ecosystem sustainability. Persistent organic pollutants (POPs) like per- and polyfluoroalkyl substances (PFAS) are expensive to clean up once emitted. Innovative and synergistic strategies are urgently needed, yet process integration and cost-effectiveness remain challenging. An in-situ PFAS remediation system is developed to employ a plant-derived biomimetic nano-framework to achieve highly efficient adsorption and subsequent fungal biotransformation synergistically. The multiple component framework is presented as Renewable Artificial Plant for In-situ Microbial Environmental Remediation (RAPIMER). RAPIMER exhibits high adsorption capacity for the PFAS compounds and diverse adsorption capability toward co-contaminants. Subsequently, RAPIMER provides the substrates and contaminants for in situ bioremediation via fungus Irpex lacteus and promotes PFAS detoxification. RAPIMER arises from cheap lignocellulosic sources, enabling a broader impact on sustainability and a means for low-cost pollutant remediation. Persistent organic pollutant (POP) remediation is important for protecting the environment and human health but can be expensive. Here, the authors report on the creation of a plant-based remediation material which can absorb high levels of POPs and then provide the nutrients needed for fungal degradation and detoxification.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据