4.8 Article

Photo-thermo-induced room-temperature phosphorescence through solid-state molecular motion

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-31481-3

关键词

-

资金

  1. NSFC/China [21908146]
  2. Innovation Research Foundation of Shenzhen [GXWD20201230155427003-20200728150952003]
  3. Shanghai Pujiang Program [20PJ1402900]
  4. Shanghai Science and Technology Commission Basic Project-Shanghai Natural Science Foundation [21ZR1418400]

向作者/读者索取更多资源

In this study, a series of phosphorescent materials with non-invasive and rapid responsive properties were designed and prepared. These materials exhibit light stimulus-triggered phosphorescence through intramolecular rotation induced by photon irradiation. The conversion from photothermal effect to phosphorescence activation was found to play a crucial role in achieving efficient phosphorescence.
The development of non-invasive, rapid responsive phosphorescence is highly desirable but has rarely been described. Herein, the authors designed and prepare a series of molecular rotors containing a room temperature phosphorescence active triazine core and three bromobiphenyl units acting as rotors and demonstrate light stimulus triggered phosphorescence. The development of smart-responsive materials, in particular those with non-invasive, rapid responsive phosphorescence, is highly desirable but has rarely been described. Herein, we designed and prepared a series of molecular rotors containing a triazine core and three bromobiphenyl units: o-Br-TRZ, m-Br-TRZ, and p-Br-TRZ. The bromine and triazine moieties serve as room temperature phosphorescence-active units, and the bromobiphenyl units serve as rotors to drive intramolecular rotation. When irradiated with strong ultraviolet photoirradiation, intramolecular rotations of o-Br-TRZ, m-Br-TRZ, and p-Br-TRZ increase, successively resulting in a photothermal effect via molecular motions. Impressively, the photothermal temperature attained by p-Br-TRZ is as high as 102 degrees C, and synchronously triggers its phosphorescence due to the ordered molecular arrangement after molecular motion. The thermal effect is expected to be important for triggering efficient phosphorescence, and the photon input for providing a precise and non-invasive stimulus. Such sequential photo-thermo-phosphorescence conversion is anticipated to unlock a new stimulus-responsive phosphorescence material without chemicals invasion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据