4.8 Article

Low-noise frequency-agile photonic integrated lasers for coherent ranging

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-30911-6

关键词

-

资金

  1. European Union [863322]
  2. Marie Sklodowska-Curie IF grant [101033663]
  3. Air Force Office of Scientific Research [FA9550-19-1-0250]
  4. Swiss National Science Foundation [192293, 176563, 201923]
  5. European Space Technology Centre
  6. United States' National Science Foundation [PHY 18-39164, DMR 17-47426, QIS DCL 20-063]
  7. ESA [4000135357/21/NL/GLC/my]
  8. Marie Curie Actions (MSCA) [101033663] Funding Source: Marie Curie Actions (MSCA)

向作者/读者索取更多资源

The authors present a narrow linewidth hybrid photonic integrated laser with low noise and fast wavelength tuning, and demonstrate its application in FMCW LiDAR. This integrated laser features narrow linewidth and high tuning speed, making it suitable for scenarios requiring high compactness and spectral purity.
Stable and tunable integrated lasers are fundamental building blocks for applications from spectroscopy to imaging and communication. Here the authors present a narrow linewidth hybrid photonic integrated laser with low frequency noise and fast linear wavelength tuning. They then provide an efficient FMCW LIDAR demonstration. Frequency modulated continuous wave laser ranging (FMCW LiDAR) enables distance mapping with simultaneous position and velocity information, is immune to stray light, can achieve long range, operate in the eye-safe region of 1550 nm and achieve high sensitivity. Despite its advantages, it is compounded by the simultaneous requirement of both narrow linewidth low noise lasers that can be precisely chirped. While integrated silicon-based lasers, compatible with wafer scale manufacturing in large volumes at low cost, have experienced major advances and are now employed on a commercial scale in data centers, and impressive progress has led to integrated lasers with (ultra) narrow sub-100 Hz-level intrinsic linewidth based on optical feedback from photonic circuits, these lasers presently lack fast nonthermal tuning, i.e. frequency agility as required for coherent ranging. Here, we demonstrate a hybrid photonic integrated laser that exhibits very narrow intrinsic linewidth of 25 Hz while offering linear, hysteresis-free, and mode-hop-free-tuning beyond 1 GHz with up to megahertz actuation bandwidth constituting 1.6 x 10(15) Hz/s tuning speed. Our approach uses foundry-based technologies - ultralow-loss (1 dB/m) Si3N4 photonic microresonators, combined with aluminium nitride (AlN) or lead zirconium titanate (PZT) microelectromechanical systems (MEMS) based stress-optic actuation. Electrically driven low-phase-noise lasing is attained by self-injection locking of an Indium Phosphide (InP) laser chip and only limited by fundamental thermo-refractive noise at mid-range offsets. By utilizing difference-drive and apodization of the photonic chip to suppress mechanical vibrations of the chip, a flat actuation response up to 10 MHz is achieved. We leverage this capability to demonstrate a compact coherent LiDAR engine that can generate up to 800 kHz FMCW triangular optical chirp signals, requiring neither any active linearization nor predistortion compensation, and perform a 10 m optical ranging experiment, with a resolution of 12.5 cm. Our results constitute a photonic integrated laser system for scenarios where high compactness, fast frequency actuation, and high spectral purity are required.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据