4.8 Article

Diversity of spatiotemporal coding reveals specialized visual processing streams in the mouse cortex

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-29656-z

关键词

-

资金

  1. Neuro-Electronics Research Flanders
  2. Research Foundation Flanders (FWO) [12E4314N, G0D0516N]
  3. KU Leuven Research Council [C14/16/048]

向作者/读者索取更多资源

This study reveals the diversity and stereotyped tuning of neural representations in the dorsal and ventral areas of the mouse visual cortex, indicating the presence of parallel processing channels and streams. Furthermore, the study uncovers the specialization of different cortical areas for distinct perceptual features and spatial abilities.
The cerebral cortex contains different neural representations of the visual scene. Here, the authors show diverse and stereotyped tuning composing specialized representations in the dorsal and ventral areas of the mouse visual cortex, suggesting parallel processing channels and streams. The cerebral cortex contains diverse neural representations of the visual scene, each enabling distinct visual and spatial abilities. However, the extent to which representations are distributed or segregated across cortical areas remains poorly understood. By determining the spatial and temporal responses of >30,000 layer 2/3 pyramidal neurons, we characterize the functional organization of parallel visual streams across eight areas of the mouse cortex. While dorsal and ventral areas form complementary representations of spatiotemporal frequency, motion speed, and spatial patterns, the anterior and posterior dorsal areas show distinct specializations for fast and slow oriented contrasts. At the cellular level, while diverse spatiotemporal tuning lies along a continuum, oriented and non-oriented spatial patterns are encoded by distinct tuning types. The identified tuning types are present across dorsal and ventral streams. The data underscore the highly specific and highly distributed nature of visual cortical representations, which drives specialization of cortical areas and streams.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据