4.8 Article

Hydrogenated Cs2AgBiBr6 for significantly improved efficiency of lead-free inorganic double perovskite solar cell

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-31016-w

关键词

-

资金

  1. Beijing Innovation Team Building Program, China [IDHT20190503]
  2. National Natural Science Foundation of China [11704015, 51621003, 12074016]
  3. General Program of Science and Technology Development Project of Beijing Municipal Education Commission [KM202110005003]
  4. Beijing Natural Science Foundation [Z210016]
  5. National Key Research and Development Program of China [2016YFB0700700]

向作者/读者索取更多资源

The authors report hydrogenated lead-free inorganic perovskite solar cells with enhanced power conversion efficiency. By using a hydrogenation method, the bandgap of Cs2AgBiBr6 films could be tunable from 2.18 eV to 1.64 eV, resulting in improved photoelectric conversion efficiency of the solar cells.
Though inorganic perovskites are an attractive, non-toxic and stable alternative to organic-inorganic halide perovskite solar cells, realizing efficient devices remains a challenge. Here, the authors report hydrogenated lead-free inorganic perovskite solar cells with enhanced power conversion efficiency. Development of lead-free inorganic perovskite material, such as Cs2AgBiBr6, is of great importance to solve the toxicity and stability issues of traditional lead halide perovskite solar cells. However, due to a wide bandgap of Cs2AgBiBr6 film, its light absorption ability is largely limited and the photoelectronic conversion efficiency is normally lower than 4.23%. In this text, by using a hydrogenation method, the bandgap of Cs2AgBiBr6 films could be tunable from 2.18 eV to 1.64 eV. At the same time, the highest photoelectric conversion efficiency of hydrogenated Cs2AgBiBr6 perovskite solar cell has been improved up to 6.37% with good environmental stability. Further investigations confirmed that the interstitial doping of atomic hydrogen in Cs2AgBiBr6 lattice could not only adjust its valence and conduction band energy levels, but also optimize the carrier mobility and carrier lifetime. All these works provide an insightful strategy to fabricate high performance lead-free inorganic perovskite solar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据