4.8 Article

Ammonia for post-healing of formamidinium-based Perovskite films

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-32047-z

关键词

-

资金

  1. Youth Innovation Promotion Association CAS [Y201944]
  2. Natural Science Foundation of Shandong Province [ZR2020KB001]
  3. Shandong Energy Institute [SEI I202129]
  4. National Natural Science Foundation of China [51902324]
  5. [tsqn201812110]

向作者/读者索取更多资源

This study investigates the role of transamination reactions in the degradation mechanism of formamidinium-containing perovskites in an aliphatic amines environment. Ammonia is selected as a post-healing gas to facilitate the formation of highly uniform and compact formamidinium-based perovskite films. Low temperature is crucial in achieving a liquid intermediate state and eliminating voids in the raw films. The champion perovskite solar cell achieved a power conversion efficiency of 23.21% with excellent reproducibility.
Solvents employed for perovskite film fabrication not only play important roles in dissolving the precursors but also participate in crystallization process. High boiling point aprotic solvents with O-donor ligands have been extensively studied, but the formation of a highly uniform halide perovskite film still requires the participation of additives or an additional step to accelerate the nucleation rate. The volatile aliphatic methylamine with both coordinating ligands and hydrogen protons as solvent or post-healing gas facilitates the process of methylamine-based perovskite films with high crystallinity, few defects, and easy large-scale fabrication as well. However, the attempt in formamidinium-containing perovskites is challenged heretofore. Here, we reveal that the degradation of formamidinium-containing perovskites in aliphatic amines environment results from the transimination reaction of formamidinium cation and aliphatic amines along with the formation of ammonia. Based on this mechanism, ammonia is selected as a post-healing gas for a highly uniform, compact formamidinium-based perovskite films. In particular, low temperature is proved to be crucial to enable formamidinium-based perovskite materials to absorb enough ammonia molecules and form a liquid intermediate state which is the key to eliminating voids in raw films. As a result, the champion perovskite solar cell based on ammonia post-healing achieves a power conversion efficiency of 23.21% with excellent reproducibility. Especially the module power conversion efficiency with 14 cm(2) active area is over 20%. This ammonia post-healing treatment potentially makes it easier to upscale fabrication of highly efficient formamidinium-based devices. Solvents used for perovskite film fabrication not only dissolve the precursors but also play a role in the crystallization process. Here, authors study the role of transamination reactions in the underlying degradation mechanism of formamidinium-containing perovskites in aliphatic amines environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据