4.8 Article

Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-30927-y

关键词

-

资金

  1. National Natural Science Foundation of China [22073020, 21773040, 21822503, 51973043, 22135001, 21721002]
  2. Strategic Priority Research Program of the Chinese Academy of Sciences [XDB36000000]
  3. CAS-CSIRO Joint Project of Chinese Academy of Sciences [121E32KYSB20190021]

向作者/读者索取更多资源

This study reveals the relationship between reorganization energy and energy losses by designing and synthesizing two acceptors with smaller reorganization energies, providing direction for achieving high-performance organic solar cells.
Minimizing energy loss is of critical importance in the pursuit of attaining high-performance organic solar cells. Interestingly, reorganization energy plays a crucial role in photoelectric conversion processes. However, the understanding of the relationship between reorganization energy and energy losses has rarely been studied. Here, two acceptors, Qx-1 and Qx-2, were developed. The reorganization energies of these two acceptors during photoelectric conversion processes are substantially smaller than the conventional Y6 acceptor, which is beneficial for improving the exciton lifetime and diffusion length, promoting charge transport, and reducing the energy loss originating from exciton dissociation and non-radiative recombination. So, a high efficiency of 18.2% with high open circuit voltage above 0.93 V in the PM6:Qx-2 blend, accompanies a significantly reduced energy loss of 0.48 eV. This work underlines the importance of the reorganization energy in achieving small energy losses and paves a way to obtain high-performance organic solar cells. Minimising energy loss is important for achieving high-performance organic solar cells. Here, the authors design and synthesise two acceptors with small reorganisation energies and reveal the relationship between reorganisation energy and energy losses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据