4.3 Article

Multi-scale Structural Modeling of Soft Tissues Mechanics and Mechanobiology

期刊

JOURNAL OF ELASTICITY
卷 129, 期 1-2, 页码 7-48

出版社

SPRINGER
DOI: 10.1007/s10659-016-9607-0

关键词

Soft biological tissues; Finite deformation; Non-linear mechanics; Growth and remodeling; Multi-scale structural modeling; Mechanobiology

资金

  1. National Institutes of Health [NIH R01 HL117990]

向作者/读者索取更多资源

Soft tissues account for a major fraction of the body volume and mass. They are present in all non-skeletal organs, being responsible for protecting the body, maintaining internal homeostasis, and allowing for mobility. Their function in different organs is highly diverse, as are their properties which are optimally suited for their specific tasks. From a mechanical perspective, specificity of structure and properties is acquired via evolutionary adaptation of the tissue composition and multi-scale structure. In modeling tissue mechanics and mechano-biology, it is thus natural to seek the structural determinants of tissues and their evolution (the structural approach). Earlier models were exclusively phenomenological, based either on the general principles of non-linear continuum mechanics or alternatively, on empirical mathematical expressions that fit specific response patterns. In the late 1970's, structural models were introduced to tissue mechanics (Lanir in J. Biomechanics 12(6): 423-436, 1979; Lanir in J. Biomechanics 16(1): 1-12, 1983). Ever since, a gradually increasing number of structural models have been developed for different types of tissues, and today, it is the method of choice (Cowin and Humphrey in J. Elasticity 61: ix-xii, 2000). The structural approach was recently extended to incorporate a mechanistic formulation of mechano-biological pathways by which tissue structures remodel during growth (Lanir in Biomech Model Mechanobiol, 14(2): 245-266, 2015). Here, the characteristic features of soft tissue structures and their constitutive modeling are reviewed. The presentation starts with a brief survey of the multi-scale and multi-phasic soft tissues structure. The global mechanical characteristics of soft tissues and of their constituents are then briefly reviewed. These two aspects form the basis for structural constitutive formulation via the multi-scale structure-function link. Based on established criteria for model validity, predictions of the formulated theory are contrasted against measured response characteristics. Using this structure-function relationship, the evolutionary pathway by which tissue structure and mechanics remodel during growth to adapt to their physiological function, is laid down. The review concludes with an account of the state of the art, the big picture, and future research challenges in tissue mechanobiological modeling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据