4.7 Article

The deubiquitinase USP7 promotes HNSCC progression via deubiquitinating and stabilizing TAZ

期刊

CELL DEATH & DISEASE
卷 13, 期 8, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/s41419-022-05113-z

关键词

-

资金

  1. National Natural Science Foundation of China [82072991]
  2. Key Research Program in Jiangsu Province-Social Developmental Project [BE2020706, BE2021723]
  3. Priority Academic Program Development of Jiangsu Higher Education Institutions [2018-87]

向作者/读者索取更多资源

USP7 is identified as a deubiquitinase for TAZ in HNSCC, promoting cell proliferation, migration, invasion and tumor growth. Inhibition of USP7 can significantly suppress tumor growth, suggesting that USP7 may serve as a potential therapeutic target for HNSCC.
Dysregulated abundance, location and transcriptional output of Hippo signaling effector TAZ have been increasingly linked to human cancers including head neck squamous cell carcinoma (HNSCC). TAZ is subjected to ubiquitination and degradation mediated by E3 ligase beta-TRCP. However, the deubiquitinating enzymes and mechanisms responsible for its protein stability remain underexplored. Here, we exploited customized deubiquitinases siRNA and cDNA library screen strategies and identified USP7 as a bona fide TAZ deubiquitinase in HNSCC. USP7 promoted cell proliferation, migration, invasion in vitro and tumor growth by stabilizing TAZ. Mechanistically, USP7 interacted with, deubiquitinated and stabilized TAZ by selectively removing its K48-linked ubiquitination chain independent of canonical Hippo kinase cascade. USP7 potently antagonized beta-TRCP-mediated ubiquitin-proteasomal degradation of TAZ and enhanced its nuclear retention and transcriptional output. Importantly, overexpression of USP7 correlated with TAZ upregulation, tumor aggressiveness and unfavorable prognosis in HNSCC patients. Pharmacological inhibition of USP7 significantly suppressed tumor growth in both xenograft and PDX models. Collectively, these findings identify USP7 as an essential regulator of TAZ and define USP7-TAZ signaling axis as a novel biomarker and potential therapeutic target for HNSCC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据