4.8 Article

Layered metal oxides loaded ceramic membrane activating peroxymonosulfate for mitigation of NOM membrane fouling

期刊

WATER RESEARCH
卷 222, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2022.118928

关键词

Ceramic catalytic membrane; Binary layered metal oxides; Peroxymonosulfate activation; Membrane fouling mitigation; Surface water treatment

资金

  1. National Natural Science Foundation of China [51978232]
  2. Natural Science Foundation of Hebei Province, China
  3. Natural Science Foundation of Tianjin City, China [19JCJQJC63000]

向作者/读者索取更多资源

Catalytic membranes were prepared by loading binary layered metal oxides on alumina ceramic substrate membranes. The presence of peroxymonosulfate effectively reduced membrane fouling and improved the normalized flux. The study also proposed a mechanism for membrane fouling mitigation in catalytic membrane systems.
Catalytic membrane can achieve sieving separation and advanced oxidation simultaneously, which can improve the effluent water quality while reducing membrane fouling. In this study, the catalytic membranes (M2+Al@AM) were fabricated by loading different binary layered metal oxides (M2+Al-LMO: MnAl-LMO, CuAl-LMO and CoAl-LMO) on alumina ceramic substrate membranes (AM) via vacuum filtration followed by calcination process. The performance of the catalytic membranes was investigated by filtering actual surface water. It was found that the presence of peroxymonosulfate (PMS) could mitigate membrane fouling effectively, as evidenced by the increase of normalized flux from 0.28 to 0.62 in CoAl@AM/PMS system, from 0.25 to 0.52 in CuAl@AM/PMS system, and from 0.22 to 0.31 in MnAl@AM/PMS system, respectively. Correspondingly, the CoAl@AM exhibited the highest removal for UV254, TOC and fluorescent components in the surface water, followed by CuAl@AM and MnAl@AM. Quenching effect of phenol and furfuryl alcohol proposed the surface-bound radicals and singlet oxygen were the major reactive oxygen species in the M2+Al@AM/PMS systems. Interface free energy calculations confirmed the in-situ PMS activation could enhance the repulsive interactions between NOM and the membranes, thus mitigating membrane fouling. This work provides an original but simple strategy for catalytic ceramic membrane preparation and new insights into the mechanism of membrane fouling mitigation in catalytic membrane system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据