4.8 Article

Influential mechanism of water occurrence states of waste-activated sludge: Over-focused significance of cell lysis to bound water reduction

期刊

WATER RESEARCH
卷 221, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2022.118737

关键词

Waste-activated sludge; Bound water; Dewatering; Cell lysis; Water-organics affinity

资金

  1. Shanghai Science and Technology Committee [21YF1449100, 21230714500]
  2. Ministry of Science and Technology, People?s Republic of China [2020YFC1908603-03]
  3. National Natural Science Foundation of China [52100159, 51978495]
  4. State Key Laboratory of Pollution Control and Resource Reuse [PCRRE20009]
  5. Tongji University [22120210533]

向作者/读者索取更多资源

The cell membrane structure has a significant influence on the dewatering performance of waste-activated sludge, but there is still debate on the optimal extent of cell lysis. This study used non-chemical methods such as sonication, cyclic freezing-thawing, and DMSO amendment to lyse microbial cells and found that the extent of cell lysis had limited impact on the water occurrence states of the sludge.
The rigid cell membrane structure is widely thought to retain the intracellular water and positively contributes to the presence of bound water in waste-activated sludge (WAS), which is the main obstacle of its highly-efficient dewatering. However, few studies realized the quantification of intracellular water fraction in the total bound water. Thus, there still may be some debates on whether and what extent of cell lysis is optimal for the dewaterability improvement. This study specifically focused on the effect of microbial cell lysis on the water occurrence states of WAS. The sonication, cyclic freezing-thawing and dimethyl sulfoxide (DMSO) amendment were used as the non-chemical means for cell lysis without altering the chemical compositions of WAS. The extent of cell lysis was quantified by the aqueous lactate dehydrogenase (LDH) released from intracellular cytoplasm and the water occurrence states of WAS were characterized by the transverse relaxation time (T2) spectra of low-field nuclear magnetic resonance (NMR). The results indicated that 8 h sonication (60 W/g dry matter, solid content of WAS: 23.10 +/- 0.30 g/L) completely lysed the microbial cells, but only increased the moderately mobile water fraction from 0.555% to 2.370%; similarly, it could be estimated that nearly 15% of cells were destructed after 5 times of freezing-thawing, but the fraction of moderately mobile water only rose from 0.555% to 0.805%. The transmission electron microscope (TEM) with ultrathin sections visually tracked the WAS micro-morphology accompanied with the cell lysis; the sonication caused the notable lysis of microbial cells and dispersed the external encapsulating components, which originally surrounded microbial cells closely; most of the microbial cells could be deformed but wasn't lysed by cyclic freezing-thawing; DMSO amendment made the outer edge of microbial cells tend to be rough, which may reflect the DMSO-enhanced permeability of cell membrane. The correlative analysis further indicated that the capillary suction time (CST) had the close correlation with particle size/zeta potential (Pearson coefficient>0.85, p-value<0.05), but no strong correlation was identified between CST and slightly reduced bound water contents (Pearson coefficient<0.9, p-value >= 0.05). Instead of the cell integrity, the compositional aggregation states dominated the water occurrence states of WAS. Highly-efficient conditioning approaches should rely on the reduction of bio-floc porosity through eliminating solid-liquid interfacial affinity instead of damaging the cell membrane structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据