4.8 Article

Multiple microplastics induced stress on anaerobic granular sludge and an effectively overcoming strategy using hydrochar

期刊

WATER RESEARCH
卷 222, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2022.118895

关键词

Multiple microplastics; Anaerobic granular sludge; Hydrochar; Overcoming; Adsorption; Inhibition

资金

  1. Australian Research Council (ARC) [DP220101139, DE220100530]

向作者/读者索取更多资源

Previous studies on anaerobic granular sludge (AGS) mainly focused on the response to a single type of microplastics during wastewater treatment. However, various types of microplastics have been detected in wastewater. This study comprehensively investigated the influences of multiple coexisting microplastics on the AGS system and proposed a mitigating strategy using hydrochar.
Previous studies mostly focused on the responses of anaerobic granular sludge (AGS) to one kind of microplastics during wastewater treatment. However, a wide variety of microplastics has been detected in wastewater. The multiple microplastics induced stress on AGS and the effectively mitigating strategy still remain unavailable. Herein, this work comprehensively excavated the influences of multiple microplastics (i.e., polyethylene terephthalate (PET), polystyrene (PS), polyethylene (PE) and polypropylene (PP)) coexisting in the wastewater on AGS system from macroscopic to microcosmic aspects. Experimental results illustrated that microplastics decreased AGS granule size, increased cell inactivation and caused deteriorative methane recovery from wastewater. As such, this study then put great emphasis on proposing a mitigating strategy using hydrochar and disclosing the role of hydrochar in overcoming the stress induced by coexisting microplastics to AGS system. Physiological characterization and microbial community analysis demonstrated that hydrochar effectively mitigated the reductions in methane production by 50.6% and cell viability by 68.8% of microplastics-bearing AGS and reduced the toxicity of microplastics to microbial community in the AGS. Mechanisms investigation by fluorescence tagging and excitation emission matrix fluorescence spectroscopy with fluorescence regional integration (EEM-FRI) analysis revealed that hydrochar adsorbed/accumulated microplastics and enhanced microplastics-bearing AGS to secrete extracellular polymeric substance (EPS) with more humic acid generation, thus reducing the direct contact between microplastics and AGS. In addition, hydrochar weakened the AGS intracellular oxidative stress induced by microplastics, thereby completely eliminating the inhibition of microplastics on acidification efficiency of AGS, and partially mitigating the suppression on methanation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据