4.8 Article

The changes of microplastics' behavior in adsorption and anaerobic digestion of waste activated sludge induced by hydrothermal pretreatment

期刊

WATER RESEARCH
卷 221, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2022.118744

关键词

Microplastics; Waste activated sludge; Hydrothermal pretreatment; Physicochemical property; Adsorption; Anaerobic digestion

资金

  1. National Natural Science Foundation of China [31970117]
  2. Science and Technology Commission of Shanghai Municipality [22ZR1405900, 19DZ1204704]

向作者/读者索取更多资源

The study found that the combination of hydrothermal pretreatment and anaerobic digestion can increase the biogas production of waste activated sludge. However, the hydrothermal pretreatment changes the physicochemical properties and adsorption performances of microplastics, which inhibits methane production.
Waste activated sludge (WAS) contains high concentrations of microplastics (MPs), which could serve as vectors of various organic pollutants and heavy metals, causing synergistic transportation and pollution. The application of combined hydrothermal pretreatment (HTP) and anaerobic digestion (AD) has raised growing concerns since the low-temperature hydrothermal treatment could enhance the biogas production of WAS. However, the changes in physicochemical properties, adsorption performances, and effects on AD of MPs by HTP have not been studied. The study used three typical MPs in WAS, and it was found that the HTP (170 degrees C & 30min) increased MPs' specific surface area and carbonyl index (CI) while decreasing the relative crystallinity. The adsorption capacity to Cd increased through the carbonylation for polyethylene microplastic (PE-MP) and polystyrene microplastic (PS-MP) while decreasing by the dechlorination for polyvinyl chloride microplastic (PVC-MP). Meanwhile, increased hydrophilicity reduced the adsorption capacities of all three typical MPs for ofloxacin. The above results indicated that the HTP could be worth blocking the adsorption of polar MPs for polar pollutants. For the pristine MPs, only PVC-MP at the highest concentration (0.5 g kg(-1) VS) significantly (p < 0.05) reduced methane production by 16.2 +/- 3.3% of WAS without the HTP. However, the HTP resulted in significant (p < 0.05) inhibition of methane production of WAS at high concentrations of PE-MP and PVC-MP (e.g., 0.1 and 0.5 g kg(-1) VS), which was due to the acceleration of the released toxic plastic additives (dibutyl phthalate, dimethyl phthalate, and bisphenol-A). Microbial analysis showed the abundances of vital anaerobes, such as acid-producing bacteria (Acetoanerrobium and Mesotoga), proteolytic bacteria (Proteiniborus), and methanogens (Methanosaeta) clearly decreased with the PE-MP and PVC-MP after the HTP, which might result in the decreased methane production. The study provided deep-insight of MPs' behaviors during the combined HTP-AD process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据