4.2 Article

Coal fire mapping of East Basuria Colliery, Jharia coalfield using vertical derivative technique of magnetic data

期刊

JOURNAL OF EARTH SYSTEM SCIENCE
卷 125, 期 1, 页码 165-178

出版社

INDIAN ACAD SCIENCES
DOI: 10.1007/s12040-016-0655-4

关键词

Coal fire mapping; proton precession magnetometer; reduction to magnetic pole; vertical derivatives

资金

  1. DST, Govt. of India [SB/S4/ES-640/2012]

向作者/读者索取更多资源

The present study deals with the coal fire mapping of East Basuria Colliery, Jharia coalfield, India, using the magnetic method. It is based on the fact that rise in temperature would result significant changes in magnetic susceptibility and thermo-remanent magnetization (TRM) of the overlying rocks. Magnetism increases slowly with the rise of temperature until the Curie temperature. Generally, rock/overburden loses magnetization and becomes paramagnetic due to heating to Curie temperature, which results with significant reduction in magnetic susceptibility. However, magnetism increases significantly after cooling below the Curie temperature. Several data processing methods such as diurnal correction, reduction to pole (RTP), first and second vertical derivatives have been used for analysis of magnetic data and their interpretation. It is observed that the total magnetic field intensity anomaly of the area varies approximately from 44850 to 47460 nT and the residual magnetic anomaly varies approximately from 1323 to 1253 nT. The range of the magnetic anomaly after RTP is approximately 1050-1450 nT. About 20 low magnetic anomaly zones have been identified associated with active coal fire regions and 11 high magnetic anomaly zones have been identified associated with non-coal fire regions using vertical derivative techniques.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据