4.6 Article

Effects of As, P and Sb on the output voltage generation of ZnO nanowires based nanogenerator: Mitigation of screening effect by using surface modified ZnO nanowires

期刊

VACUUM
卷 202, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.vacuum.2022.111130

关键词

ZnO nanowires; Piezoelectric potential; VING; Schottky contact; Nanogenerator

资金

  1. Universiti Tun Hussein Onn (UTHM) Malaysia [H838]

向作者/读者索取更多资源

High output voltages are generated by introducing impurities to ZnO nanowires, with the highest voltage achieved through further oxidation. The study demonstrates the potential for using p-type ZnO nanowires in vertically integrated nanowire generators.
Here, we report high output voltage generation by employing p-type ZnO nanowires as an integral part of vertically integrated nanowire generators (VING). Study has been carried out to generate high piezoelectric voltage by introducing impurities to ZnO nanowires from group V (P, As, Sb) elements which worked as acceptor impurities for intrinsically n-type ZnO nanowires by which reverse leakage current through nanowires has been minimized. Three distinct doping concentrations (2, 4 and 6 wt %) of (P, As, and Sb) have been incorporated in ZnO nanowires at room temperature. X-ray photoelectron spectra (XPS) has indicated the presence of Sb-Zn-2V(Zn), PZn + 2V(Zn), As-Zn-2V(Zn) complexes acceptors for Sb, P, As doping respectively. Gradual rise in piezoelectric output voltage has been observed. P/ZnO nanowires generated output voltages of 0.9 V, 1.45 V and 1.85 V respectively. For As/ZnO nanowires, output voltages are 1.25 V, 1.51 V and 1.92 V and with Sb doping recorded voltage values are 1.78 V 2.1 V and 2.5 V respectively. To Acquire optimal output voltage doped ZnO nanowires have been further oxidized (with O-2) to mitigate the screening effect and maximum voltage generated by oxidized ZnO are 2.38 V, 2.86 V, and 3.45 V respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据