4.7 Review

A review and assessment of importance sampling methods for reliability analysis

期刊

STRUCTURAL SAFETY
卷 97, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.strusafe.2022.102216

关键词

Importance sampling; Reliability analysis; Gaussian mixture; Kernel density estimation; Surrogate

向作者/读者索取更多资源

This paper reviews the mathematical foundation of importance sampling technique and discusses two general classes of methods for constructing the importance sampling density for reliability analysis. It explains the failure probability estimator, statistical properties, and computational complexity of the importance sampling technique. The paper explores and compares the performance of two classes of importance sampling methods using benchmark examples, and discusses the challenges and future directions of this technique.
This paper reviews the mathematical foundation of the importance sampling technique and discusses two general classes of methods to construct the importance sampling density (or probability measure) for reliability analysis. The paper first explains the failure probability estimator of the importance sampling technique, its statistical properties, and computational complexity. The optimal but not implementable importance sampling density, derived from the variational calculus, is the starting point of the two general classes of importance sampling methods. For time-variant reliability analysis, the optimal but not implementable stochastic control is derived that induces the corresponding optimal importance sampling probability measure. In the first class, the optimal importance sampling density is directly approximated by a member of a family of parametric or nonparametric probability density functions. This approximation requires defining the family of approximating probability densities, a measure of distance between two probability densities, and an optimization algorithm. In the second class, the approximating importance sampling density has the general functional form of the optimal solution. The approximation amounts to replacing the limit-state function with a computationally convenient surrogate. The paper then explores the performances of the two classes of importance sampling methods through several benchmark numerical examples. The challenges and future directions of the importance sampling technique are also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据