4.6 Article

Possibilities of Real Time Monitoring of Micropollutants in Wastewater Using Laser-Induced Raman & Fluorescence Spectroscopy (LIRFS) and Artificial Intelligence (AI)

期刊

SENSORS
卷 22, 期 13, 页码 -

出版社

MDPI
DOI: 10.3390/s22134668

关键词

environmental monitoring; micropollutants; data processing; real-time monitoring; wastewater treatment plant; DUV Raman; fluorescence spectroscopy; artificial intelligence

向作者/读者索取更多资源

The entire water cycle is contaminated with undetected micropollutants, which poses a threat to wastewater treatment. In our case study, we used Deep-UV laser-induced Raman and fluorescence spectroscopy in combination with a CNN-based AI support to analyze samples from different treatment stages of a wastewater treatment plant. The results showed the potential of this method for online monitoring and analysis of micropollutants in wastewater treatment.
The entire water cycle is contaminated with largely undetected micropollutants, thus jeopardizing wastewater treatment. Currently, monitoring methods that are used by wastewater treatment plants (WWTP) are not able to detect these micropollutants, causing negative effects on aquatic ecosystems and human health. In our case study, we took collective samples around different treatment stages (aeration tank, membrane bioreactor, ozonation) of a WWTP and analyzed them via Deep-UV laser-induced Raman and fluorescence spectroscopy (LIRFS) in combination with a CNN-based AI support. This process allowed us to perform the spectra recognition of selected micropollutants and thus analyze their reliability. The results indicated that the combination of sensitive fluorescence measurements with very specific Raman measurements, supplemented with an artificial intelligence, lead to a high information gain for utilizing it as a monitoring purpose. Laser-induced Raman spectroscopy reaches detections limits of alert pharmaceuticals (carbamazepine, naproxen, tryptophan) in the range of a few mu g/L; naproxen is detectable down to 1 x 10(-4) mg/g. Furthermore, the monitoring of nitrate after biological treatment using Raman measurements and AI support showed a reliable assignment rate of over 95%. Applying the fluorescence technique seems to be a promising method in observing DOC changes in wastewater, leading to a correlation coefficient of R-2 = 0.74 for all samples throughout the purification processes. The results also showed the influence of different extraction points in a cleaning stage; therefore, it would not be sensible to investigate them separately. Nevertheless, the interpretation suffers when many substances interact with one another and influence their optical behavior. In conclusion, the results that are presented in our paper elucidate the use of LIRFS in combination with AI support for online monitoring.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据