4.6 Article

IoT-Based Monitoring System Applied to Aeroponics Greenhouse

期刊

SENSORS
卷 22, 期 15, 页码 -

出版社

MDPI
DOI: 10.3390/s22155646

关键词

aeroponic; greenhouse; Internet of Things; irrigation; vapor pressure deficit; monitoring system; sensors

资金

  1. Tecnologico Nacional de Mexico en Celaya (Mexico)

向作者/读者索取更多资源

The article discusses the use of an IoT monitoring system in greenhouses to provide information on climatic variables and crop status, enabling optimal decision-making for irrigation and inspections. This innovative system has the potential to enhance aeroponic farming practices through IoT-assisted monitoring.
The inclusion of the Internet of Things (IoT) in greenhouses has become a fundamental tool for improving cultivation systems, offering information relevant to the greenhouse manager for decision making in search of optimum yield. This article presents a monitoring system applied to an aeroponic greenhouse based on an IoT architecture that provides user information on the status of the climatic variables and the appearance of the crop in addition to managing the irrigation timing and the frequency of visual inspection using an application developed for Android mobile devices called Aeroponics Monitor. The proposed IoT architecture consists of four layers: a device layer, fog layer, cloud layer and application layer. Once the information about the monitored variables is obtained by the sensors of the device layer, the fog layer processes it and transfers it to the Thingspeak and Firebase servers. In the cloud layer, Thingspeak analyzes the information from the variables monitored in the greenhouse through its IoT analytic tools to generate historical data and visualizations of their behavior, as well as an analysis of the system's operating status. Firebase, on the other hand, is used as a database to store the results of the processing of the images taken in the fog layer for the supervision of the leaves and roots. The results of the analysis of the information of the monitored variables and of the processing of the images are presented in the developed app, with the objective of visualizing the state of the crop and to know the function of the monitoring system in the event of a possible lack of electricity or a service line failure in the fog layer and to avoid the loss of information. With the information about the temperature of the plant leaf and the relative humidity inside the greenhouse, the vapor pressure deficit (VPD) in the cloud layer is calculated; the VPD values are available on the Thingspeak server and in the developed app. Additionally, an analysis of the VPD is presented that demonstrates a water deficiency from the transplanting of the seedling to the cultivation chamber. The IoT architecture presented in this paper represents a potential tool for the study of aeroponic farming systems through IoT-assisted monitoring.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据