4.7 Article

Aggregation kinetics of biochar nanoparticles in aqueous environment: Interplays of anion type and bovine serum albumin

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 833, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.155148

关键词

Biochar colloids; Aggregation; Anion type; BSA; Protein corona

资金

  1. National Natural Science Foundation of China [42107318]

向作者/读者索取更多资源

This study investigated the effects of anion type and protein on the aggregation of biochar nanoparticles in solution. The results showed that anion type indirectly affected the aggregation by influencing water molecule interactions, while protein corona significantly affected the stability of biochar nanoparticles by inducing steric force.
The colloidal particles, especially those at the nanoscale, are the most active part of the pyrogenic carbon (biochar). Increasingly applied biochar has resulted in a large number of biochar nanoparticles (NPs) being released into the environment. The aggregation of biochar NPs affects their environmental behavior and fate. The complex effects of anion type (Cl-, SO42-) and protein (bovine serum albumin, BSA) on the aggregation of wheat straw biochar (WB) and pinewood biochar (PB) NPs in solutions were investigated by the time-resolved dynamic light scattering method. The critical coagulation concentration (CCC) of WB and PB NPs in Na2SO4 solution was higher than their CCCs in NaCl solution, which was consistent with the Hofmeister series that SO42-, a kosmotrope anion, increased the interaction between water molecules, thus enhancing the hydrophobic interactions between biochar NPs in solution and promoting their aggregation, while Cl-, a chaotropic agent, exhibited the opposite effect. When BSA was added into the solution, BSA was adsorbed on the surface of biochar NPs and BSA corona was formed, which inhibited the aggregation of biochar NPs by inducing steric force. The enhanced stability of biochar NPs by BSA was more significant in NaCl than in Na2SO4 solution because BSA corona had a more negatively charged surface and a more steric structure in NaCl solution, thus generating stronger electrical repulsion and steric hindrance. The classical DLVO theory and the XDLVO theory incorporating the steric repulsion (in the presence of BSA) were used to interpret the aggregation and dispersion of biochar NPs. Through this study, we found that anion type indirectly affected the aggregation of biochar NPs by influencing the interaction between water molecules, while the aggregation of BSA-biochar NPs conjugates is mainly influenced by the surface charge and structure of BSA corona.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据