4.7 Article

Identifying and estimating the sources of river flow in the cold arid desert environment of Upper Indus River Basin (UIRB), western Himalayas

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 832, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.154964

关键词

Stable water isotopes; Microclimate; Lapse rate; Bayesian; Sub-basin

向作者/读者索取更多资源

A reliable water supply in different Himalayan River basins is increasingly important. However, these water resources are under serious threat due to climate change. This study used stable water isotope data to identify and estimate the different sources of river flow in the Upper Indus River Basin in India.
A reliable water supply in different Himalayan River basins is increasingly important for domestic, agriculture, and hydropower generation. These water resources are under serious threat due to climate change, with the potential to alter the economic stability of 237 million people living in the Indus River Basin alone. In the present study, we used new stable water isotope data set to identify and estimate the different sources of streamflow and their controlling factors in the Upper Indus River Basin (UIRB), India. The data set presented wide spatial and temporal variability without the distinct isotopic signature of various sources of river flow. However, variable but distinct signatures of sources of river/stream flow exist at the sub-basin or catchment scale. These variabilities are ascribed to changing physiographical, meteorological, and local climatic conditions. Further, the distinct microclimatic conditions including altitudinal variability, aspect slope, etc. govern the spatio-temporal variability of sources and streamflow, hence different lapse rates at sub-basin/catchment scale. The study suggested that the contribution of snowmelt and glacier melt to river flow varies spatially and temporally. The Bayesian mixing model results suggested that snowmelt contribution is higher in Indus (63 +/- 1.2%) and Shyok (58 +/- 1.7%) while as, glacier melt contribution is higher in Nubra 64 +/- 2.3% and Suru 60 +/- 2.7% sub-basins/catchments. The groundwater contribution (baseflow) sustains and regulates the flow in rivers/streams during winter and spring, which is very vital for the local water supply. The study suggests that the spatially diverse rugged topography and microclimate in UIRB dominantly control the differential contribution from various sources of river flow. The warming climate, which has resulted in a decrease in solid precipitation, continuous glacier mass loss, early melting of snow cover, etc., would have an inconsistent impact on the perennial flow of rivers with the potential to alter the economic and political stability in the region.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据