4.7 Article

Environmental factors, bacterial interactions and plant traits jointly regulate epiphytic bacterial community composition of two alpine grassland species

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 836, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.155665

关键词

Precipitation; Plant surface bacteria; Community composition; Community's cohesion; Path model

资金

  1. Second Tibetan Plateau Scientific Expedition and Research (STEP) program [2019QZKK0302]
  2. National Natural Science Foundation of China [31988102]
  3. China Postdoctoral Science Foundation [2021M693144]

向作者/读者索取更多资源

This study investigated the factors influencing the composition of epiphytic microbial communities on alpine plants. The results showed that environmental factors, microbial interactions, and host plant traits all played significant roles in shaping the composition of these communities. Mean annual precipitation was found to be the most important factor, with a stronger effect on the phyllosphere compared to the rhizosphere. Leaf trichome cover and plant height were identified as important host plant traits affecting the composition of the phyllosphere bacterial community.
Epiphytic microbes on the surfaces of leaves and roots can bring substantial benefits or damages to their plant hosts. Although various factors have been proposed for shaping the epiphytic microbial composition, the contributions of environment factors, endogenous microbial taxa interactions, host plant traits, and their interactive effects are poorly understood. Here, we conducted a field investigation along a precipitation gradient and collected leaf and root surface microbes of two alpine plant species for 16S rRNA sequencing. We found that epiphytic bacterial community composition significantly changed along the precipitation gradient through ordination analyses and permutational multivariate analysis of variance. Beneficial bacterial taxa from Caulobacteraceae, Sphingomonadaceae, Comamonadaceae and Rhizobiales were enriched in the high precipitation zones. The stress-tolerant Hymenobacteraceae, Micrococcaceae, and Geodermatophilaceae occurred more frequently in the phyllosphere, and the Thermoleophilia, Thermomicrobiales and Bacillales were enriched in the rhizosphere at the drier sites. Mean annual precipitation was the most important factor regulating the epiphytic bacterial community composition. The direct effect of climate on bacterial community composition was higher in the phyllosphere than in the rhizosphere where joint effects of climate, plant traits and soil properties predominated. Distinct leaf trichome cover and plant height clearly explained the host effect on the phyllosphere bacterial community composition while belowground traits did not explain the host effect well on the rhizosphere bacterial community composition. We detected a significant role of bacterial taxa interactions in shaping microbial communities, where greater negative taxa interactions led to lesser composition changes. Structural equation modeling showed that environmental factors and bacterial interactions substantially contributed to the variation in epiphytic community composition, followed by host plant traits. This study advances our understanding of complex factors affecting alpine epiphytic community assembly and further confirms the role of biotic interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据