4.7 Article

Toxicological effects of WS2 nanomaterials on rice plants and associated soil microbes

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 832, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.154987

关键词

Tungsten disulfide; Rice; Soil microbes; Toxicological

资金

  1. National Natural Science Foundation of China [21906081, 21876081]

向作者/读者索取更多资源

This study investigated the effects of WS2 nanomaterials on rice plant growth and soil microbial community. The results showed that high concentrations of WS2 nanomaterials had negative impacts on rice plant growth and soil microbial diversity, while increasing the content of nitrogen, phosphorus, and trace elements in soil. These findings provide fundamental information for the safe use of WS2 nanomaterials.
have a wide range of applications. To date, their environmental risks remain largely unknown. In this study, rice plants were grown in soil amended with different concentrations (0,10, and 100 mg/kg) of WS2 NMs for 4 weeks. WS2 NMs at 100 mg/kg significantly increased MDA (malondialdehyde) content and decreased total antioxidant capacities of leaves, indicating the oxidative response induced by WS2 NMs. Meanwhile, WS2 NMs at 100 mg/kg significantly decreased root biomass compared to control, indicating the negative impacts of WS2 NMs on plant growth. While exposure to 100 mg/kg WS2 NMs significantly increased soil bioavailable Cu, Fe, Zn, and Olsen-P, and increased the content of Cu, Fe, Zn, and P in rice leaves. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) analysis showed that W was taken up by rice roots and translocated into leaves. The impact of WS2 on soil microbial communities was evaluated by 16S rRNA gene sequencing. WS2 NMs at 100 mg/kg significantly decreased soil microbial diversity, as indicated by decreased Shannon index. In addition, 100 mg/kg WS2 shifted the soil microbial profile, the relative abundance of the phylum Acidobacteriota decreased, and Actinobacteriota increased. Taken together, the soil microbial community's diversity and composition have been altered upon exposure to 100 mg/kg WS2 NMs. The results of this study provide some basic information regarding the environmental behavior and phytotoxicity of WS2 NMs, which is valuable for safe use of WS2 NMs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据