4.7 Article

Efficient removal of phosphorus from constructed wetlands using solidified lanthanum/aluminum amended attapulgite/biochar composite as a novel phosphorus filter

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 833, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.155233

关键词

PAC and La co-modified attapulgite; biochar; composite; Novel P filter; Constructed wetlands; Substrate; P binding mechanism

资金

  1. National Natural Science Foundation of China [41977363]
  2. CAS Interdisciplinary Innovation Team [JCTD-2018-16]
  3. Key Research Program of Frontier Sci-ences, CAS [ZDBS-LY-DQC018]

向作者/读者索取更多资源

This study developed a new type of P filter using different materials, with SAlLa@AB showing promising potential as a substrate for constructed wetlands due to its high P sorption capacity and solubility.
Developing a suitable substrate with high phosphorus (P) sorption capacity, low solubility, and high hydraulic loading for constructed wetlands (CWs) is crucial for their functions. In this study, we used attapulgite and biochar as base materials to prepare a lanthanum/aluminum (La/Al) amended attapulgite/biochar composite as a novel P filter using a one-step drying process and subsequent high-temperature thermal treatments. Results indicated that the solidified poly aluminum chloride (PAC) amended attapulgite/biochar (SAl@AB) has a higher solubility than the solidified La-modified attapulgite/biochar (SLa@AB) and the solidified PAC and La co-modified attapulgite/biochar (SAlLa@ AB). Therefore, SAl@AB is not suitable to be used as a substrate for constructed wetlands (CWs). Batch studies indicated that SLa@AB and SAlLa@AB have maximum P sorption capacities of 12.8 mg/g and 21.3 mg/g, respectively. The P sorption rates are higher than those found in most substrates used in constructed wetlands. Additionally, pH and coexisting ions exert minor effects on the P removal performance of SAlLa@AB. Column experiments indicated that longer hydraulic retention time (HRT) favors the removal of influent P. A 120-day column experiment indicated that an average of 95% of the P influent (10 mg P/L) could be removed by the SAlLa@AB with an HRT of 8 h. The P forms analyzed by sequential extraction indicated that P removed by SAlLa@AB occurs through the formation of calcium-bound and Al-bound P fractions, which can account for 68.7% and 18.8% of the total phosphorus, respectively. The formation of lanthanum/aluminum phosphate precipitation was the main P removal mechanism of SAlLa@AB. This was further confirmed by an XPS analysis, showing a formation of La-O-P and Al-O-P inner-sphere complexes after P sorption by SAlLa@AB. The results of this study indicate that SAlLa@AB was a promising substrate for future CWs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据