4.7 Article

Metabolic impacts of polystyrene microplastics on the freshwater microalga Microcystis aeruginosa

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 836, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.155655

关键词

Microplastics; Freshwater microalgae; Untargeted metabolomics

资金

  1. National Natural Science Foundation of China [41907388]

向作者/读者索取更多资源

This study investigated the metabolic impact of polystyrene microbeads microplastics (PS-MPs) on a common freshwater microalga using metabolomics analysis. The results showed that while PS-MPs had limited effects on microalgal growth and photosynthesis, oxidative stress and microcystin production were slightly increased. Metabolomics analysis revealed that PS-MPs disrupted multiple metabolic pathways in the microalga, particularly those related to arginine.
Microplastics (plastic particles < 5 mm; MPs) are ubiquitous in aquatic environments but their potential adverse ecological effects on biota remain poorly understood. This is in part because in typical ecotoxicology tests the toxic effects of MPs were found to be limited. To capture the potential find-scale effects of MPs on freshwater organisms, we employed ultra-performance liquid chromatography-tandem mass spectrometry based untargeted metabolomics to investigate the metabolic impact of polystyrene microbeads microplastics (PS-MPs) of different sizes (0.1, 1, 10, 100 mu m) and concentrations (1,10,100 mg/L) on a common freshwater microalga, Microcystis aeruginosa, after a 96-h exposure test. The phenotype-based results illustrated that while PS-MPs had no discernible effects on microalgal growth and photosynthesis, both oxidative stress and microcystin production were slightly increased. Metabolomics analysis revealed that the PS-MPs altered the global metabolic profile of the microalga. Specially, PS-MPs of larger size and higher concentration induced a larger number of differentially expressed metabolites. The PS-MPs significantly disturbed metabolisms involved in amino acid synthesis, membrane formation, nitrogen storage, and antioxidant defense of the microalga, consistent with the phenotypic observations. These results suggested several perturbed metabolic pathways, especially arginine-related pathways, as the mechanism. Our study showed that the insights provided by metabolomics-based approaches can enhance assessments of the ecological impacts of MPs on freshwater organisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据