4.7 Article

Estimating groundwater use and demand in arid Kenya through assimilation of satellite data and in-situ sensors with machine learning toward drought early action

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 831, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.154453

关键词

Drought; Groundwater; Early warning; Early action; Machine learning; Remote sensing; Kenya

资金

  1. National Aeronautics and Space Administration [80NSSC20K0150]
  2. National Science Foundation [1738321]
  3. U.S. Agency for International Development [AID-615-A-15-00008]
  4. Autodesk Foundation
  5. Directorate For Engineering [1738321] Funding Source: National Science Foundation
  6. Div Of Industrial Innovation & Partnersh [1738321] Funding Source: National Science Foundation

向作者/读者索取更多资源

This study utilizes a combination of in-situ sensor data and satellite data to forecast groundwater use and demand in drought-prone areas of Kenya. The resulting groundwater maps provide valuable information for decision-making and resource allocation, with high accuracy.
Groundwater is an important source of water for people, livestock, and agriculture during drought in the Horn of Africa. In this work, areas of high groundwater use and demand in drought-prone Kenya were identified and forecasted prior to the dry season. Estimates of groundwater use were extended from a sentinel network of 69 in-situ sensored mechanical boreholes to the region with satellite data and a machine learning model. The sensors contributed 756 site-month observations from June 2017 to September 2021 for model building and validation at a density of approx-imately one sensor per 3700 km2. An ensemble of 19 parameterized algorithms was informed by features including satellite-derived precipitation, surface water availability, vegetation indices, hydrologic land surface modeling, and site characteristics to dichotomize high groundwater pump utilization. Three operational definitions of high demand on groundwater infrastructure were considered: 1) mechanical runtime of pumps greater than a quarter of a day (6+ hr) and daily per capita volume extractions indicative of 2) domestic water needs (35+ L), and 3) intermediate needs including livestock (75+ L). Gridded interpolation of localized groundwater use and demand was provided from 2017 to 2020 and forecasted for the 2021 dry season, June-September 2021. Cross-validated skill for contemporary estimates of daily pump runtime and daily volume extraction to meet domestic and intermediate water needs was 68%, 69%, and 75%, respectively. Forecasts were externally validated with an accuracy of at least 56%, 70%, or 72% for each groundwater use definition. The groundwater maps are accessible to stakeholders including the Kenya National Drought Management Authority (NDMA) and the Famine Early Warning Systems Network (FEWS NET). These maps represent the first operational spatially-explicit sub-seasonal to seasonal (S2S) estimates of groundwater use and demand in the literature. Knowledge of historical and forecasted groundwater use is anticipated to improve decision-making and resource allocation for a range of early warning early action applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据