4.7 Article

Use of reaction path modelling to investigate the evolution of water chemistry in shallow to deep crystalline aquifers with a special focus on fluoride

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 830, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.154566

关键词

Fluoride; Pollution; Water-rock interaction; Fluorite; Genchemical modelling

向作者/读者索取更多资源

This paper reconstructs the water-rock interaction process in crystalline aquifers using reaction path modeling, with a focus on fluoride behavior. The obtained results show that the theoretical evolution trends reproduce both shallow and deep water samples, providing detailed information on the behavior of relevant constituents.
Crystalline aquifers are layered systems in which the hydrogeological path of waters extends from highly weathered, shallow and porous rocks to poorly weathered, deep and fissured rocks. This varying hydrogeological setting influences the water chemistry in different ways. The paper aims to reconstruct the water-rock interaction process in these various environments starting from a solid reactant represented by an average granite rock and several waters from the shallow aquifer. Afterwards, the water-rock interaction processes occurring in the deep environment are reconstructed, varying the geochemical conditions (primary reactants, secondary mineral phases allowed to precipitate, fO(2) and fCO(2)), with a special focus on fluoride (F-). The evolution from the F-poor, Ca-HCO3 facies to the F-rich, Na-HCO3 water type of high pH was simulated using reaction path modelling. The obtained results show that the theoretical evolution trends well reproduce both shallow and deep water samples providing detailed information on the behavior of fluoride and other relevant constituents (i.e., Na, K, Ca, Mg, SiO2). The performed model represents a flexible and powerful tool for environmental research, applicable in other areas hosting F-rich groundwater.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据