4.7 Editorial Material

Is the role of aerobic methanotrophs underestimated in methane oxidation under hypoxic conditions?

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 833, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.155244

关键词

Methanotrophs; Anaerobic oxidation of methane; Cytochrome c; Nitrogen oxides; Mineral reduction

资金

  1. National Natural Science Foundation of China [52100112]

向作者/读者索取更多资源

This article summarizes the role of aerobic methanotrophic bacteria in anaerobic methane oxidation (AOM) under nitrite or mineral oxide dependence, as well as their new metabolic trait of simultaneously reducing nitrous oxide and oxidizing methane under hypoxic conditions.
Microbial methane oxidation is the major biological methane (CH4) sink in the carbon cycle. Methanotrophs can use various electron acceptors in addition to oxygen; understanding the role and contribution of methanotrophs is thus an important topic. However, anaerobic oxidation of methane (AOM) mediated by methanotrophs is poorly explored and understood. This article summarizes the role aerobic methanotrophic bacteria play in AOM. Though AOM was originally considered to be mediated by anaerobic methanotrophic archaea, intra-aerobic methane-oxidizing bacteria (Candidatus Methylomirabilis oxyfera) appear to be involved in nitrite-dependent AOM. In addition, aerobic methanotrophs of the Methylomonadaceae and Methylocystaceae, are more versatile than previously assumed and can also be involved in nitrate/nitrite-or mineral oxide-dependent AOM under oxygen-limitation. Furthermore, the simultaneous reduction of nitrous oxide and oxidation of CH4 may be another new metabolic trait of aerobic methanotrophs. We discuss the potential metabolic pathways of CH4 oxidation under hypoxic conditions. It is of great ecological importance not only for the quantification of CH4 oxidation and emissions, but also for the definition of a new function of aerobic methanotrophs in anaerobic/hypoxic environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据