4.8 Review

Future material requirements for global sustainable offshore wind energy development

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2022.112603

关键词

Offshore wind energy (OWE); Wind turbine; Foundation; Material demand; Rare earth elements (REEs); Recycling; Material flow analysis (MFA); Circular design (CD)

资金

  1. China Scholarship Council [201908210319]

向作者/读者索取更多资源

This study assesses the material demand and supply of offshore wind energy (OWE) worldwide, revealing that OWE development will require substantial amounts of steel, concrete, copper, and aluminum, as well as a significant increase in rare earth elements. Closed-loop recycling of end-of-life wind turbines could partially meet the material demand, and extending the lifetime of wind turbines could reduce material requirements.
Offshore wind energy (OWE) is a cornerstone of future clean energy development. Yet, research into global OWE material demand has generally been limited to few materials and/or low technological resolution. In this study, we assess the primary raw material demand and secondary material supply of global OWE. It includes a wide assortment of materials, including bulk materials, rare earth elements, key metals, and other materials for manufacturing offshore wind turbines and foundations. Our OWE development scenarios consider important drivers such as growing wind turbine size, introducing new technologies, moving further to deep waters, and wind turbine lifetime extension. We show that the exploitation of OWE will require large quantities of raw materials from 2020 to 2040: 129-235 million tonnes (Mt) of steel, 8.2-14.6 Mt of iron, 3.8-25.9 Mt of concrete, 0.5-1.0 Mt of copper and 0.3-0.5 Mt of aluminium. Substantial amounts of rare earth elements will be required towards 2040, with up to 16, 13, 31 and 20 fold expansions in the current Neodymium (Nd), Dysprosium (Dy), Praseodymium (Pr) and Terbium (Tb) demand, respectively. Closed-loop recycling of end-of-life wind turbines could supply a maximum 3% and 12% of total material demand for OWE from 2020 to 2030, and 2030 to 2040, respectively. Moreover, a potential lifetime extension of wind turbines from 20 to 25 years would help to reduce material requirements by 7-10%. This study provides a basis for better understanding future OWE material requirements and, therefore, for optimizing future OWE developments in the ongoing energy transition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据